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Abstract.—The multispecies coalescent (MSC) model accommodates genealogical fluctuations across the genome and pro‑
vides a natural framework for comparative analysis of genomic sequence data from closely related species to infer the
history of species divergence and gene flow. Given a set of populations, hypotheses of species delimitation (and species
phylogeny) may be formulated as instances of MSC models (e.g., MSC for 1 species versus MSC for 2 species) and com‑
pared using Bayesian model selection. This approach, implemented in the program BPP, has been found to be prone to
over‑splitting. Alternatively, heuristic criteria based on population parameters (such as population split times, population
sizes, and migration rates) estimated from genomic data may be used to delimit species. Here, we develop hierarchical
merge and split algorithms for heuristic species delimitation based on the genealogical divergence index (𝑔𝑑𝑖) and imple‑
ment them in a Python pipeline called HHSD. We characterize the behavior of the 𝑔𝑑𝑖 under a few simple scenarios of gene
flow. We apply the new approaches to a dataset simulated under a model of isolation by distance as well as 3 empirical
datasets. Our tests suggest that the new approaches produced sensible results and were less prone to oversplitting. We
discuss possible strategies for accommodating paraphyletic species in the hierarchical algorithm, as well as the challenges
of species delimitation based on heuristic criteria. [BPP; genealogical divergence index; gene flow; giraffes; milksnakes;
multispecies coalescent; species delimitation; sunfish.]

Delineation of species boundaries is important for char‑
acterizing patterns of biological diversity and guiding
conservation policy and practice, particularly during
the current global changes in climate and environment.
Traditionally, species were identified and distinguished
using morphological characteristics. The value of ge‑
netic data to species delimitation and identification has
long been recognized (e.g., Bateson 1909) as genetic
data are informative about many related processes, such
as species/population divergence and interspecific hy‑
bridization (Fujita et al. 2012). Early methods that use
genetic data to identify and delimit species relied on
simple genetic‑distance cutoffs (such as the “4×” or
“10×” rules), requiring interspecific divergence to be a
few times greater than intraspecific diversity (Hebert
et al. 2003, 2004), or reciprocal monophyly in gene trees
(Baum and Shaw 1995) (see, e.g., Sites and Marshall
2003 for a review). However, such criteria may be too
simplistic as they do not accommodate polymorphism
in ancestral populations and incomplete lineage sorting
(Hudson and Turelli 2003) or uncertainties in gene‑tree
reconstruction (Knowles and Carstens 2007; Yang and
Rannala 2017).

While genetic and genomic data are clearly infor‑
mative concerning the species status of populations,
interpretation of this evidence may require a proper
statistical inference framework. The processes of bio‑
logical reproduction and accumulation of mutations in

the sequences are highly stochastic, as are the sampling
errors due to finite amounts of data. The multispecies
coalescent (MSC) model (Rannala and Yang 2003) pro‑
vides a framework for analysis of genomic sequence
data from closely related species or populations to in‑
fer the order and timings of species/population diver‑
gences. Likelihood‑based implementations of the MSC
accommodate incomplete lineage sorting and stochas‑
tic variation in gene trees (so that reciprocal mono‑
phyly is not needed) as well as phylogenetic uncer‑
tainties at each locus (so that one does not have to
rely on inferred gene trees), making it possible to in‑
fer population histories even when there is widespread
incomplete lineage sorting and there is very little phy‑
logenetic information at every locus (Xu and Yang 2016;
Jiao et al. 2021). The MSC model has also been ex‑
tended to accommodate gene flow between species
or populations, assuming either a major hybridiza‑
tion/introgression event at a particular time point in
the MSC‑with‑introgression (MSC‑I) model (Wen and
Nakhleh 2018; Zhang et al. 2018; Flouri et al. 2020)
or continuous migration over an extended time period
in the MSC‑with‑migration (MSC‑M) model (Nielsen
and Wakeley 2001; Gronau et al. 2011; Hey et al.
2018; Flouri et al. 2023). As hybridization appears
to occur commonly in both plants and animals (e.g.,
Arabidopsis, Arnold et al. 2016; Anopheles mosquitoes,
Fontaine et al. 2015; Panthera cats, Figueiro et al. 2017;
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and Hominins, Nielsen et al. 2017), it may be im‑
portant to consider explicitly gene flow in species
delimitation.

Species Delimitation Through Comparison of MSC Models
Given a set of populations, different species delimi‑

tations correspond to different ways of grouping pop‑
ulations into species. Each species delimitation, to‑
gether with the phylogeny, for the delimited species
can be formulated as an instance of the MSC model
and fitted to genomic sequence data sampled from
the extant species or populations. Competing mod‑
els of delimitation can thus be compared via Bayesian
model selection using posterior model probabilities or
Bayes factors (Yang and Rannala 2010; Ji et al. 2023).
In the Bayesian program BPP, this is accomplished by
using a Markov chain Monte Carlo (MCMC) algo‑
rithm to calculate the posterior probabilities for dif‑
ferent MSC models (Yang and Rannala 2010, 2014;
Yang 2015; Flouri et al. 2018). In simulations (Luo
et al. 2018), BPP showed lower rates of species over‑
estimation and underestimation than the generalized
mixed Yule‑coalescent method (Pons et al. 2006; Fuji‑
sawa and Barraclough 2013) or the Poisson tree pro‑
cess method (Zhang et al. 2013). The approach of
model selection appears to be particularly effective
in identifying sympatric cryptic species. For exam‑
ple, Ramirez‑Reyes et al. (2020) identified 13 new
species of leaf‑toed geckos in a lineage that diverged
30 Ma.

The approach of model selection as implemented
in BPP has often been noted to identify more lineages
as distinct species than many other methods, espe‑
cially when applied to geographical populations or
races (Sukumaran and Knowles 2017). For example,
Campillo et al. (2020) analyzed 99 population pairs in
the genus Drosophila and found that BPP identified 80
pairs as distinct species, whereas reproductive isolation
was identified in only 69 pairs. Similarly, Bamberger
et al. (2022) studied 48 Albinaria cretensis land snail pop‑
ulations, and found that morphological classifications
suggested 3–9 species while BPP suggested 45–48. Bar‑
ley et al. (2018) simulated multiple populations from
a single species that exhibits population structure and
isolation by distance, and found that BPP delimited ge‑
ographically separated populations as distinct species.
These studies suggest that the lineages identified by
BPP sometimes correspond to populations rather than
species (Chambers and Hillis 2020), raising concerns
about the apparent over‑splitting of BPP (MacGuigan
et al. 2021).

Empirical Species Delimitation Based on Population
Parameters

Rather than treating species delimitation as a model‑
selection problem, an alternative approach is to define
species status using an empirical criterion based on

parameters that characterize the history of population
divergence and gene flow, such as the population split
time (𝑇𝐴𝐵, in generations), effective population sizes
(𝑁𝐴, 𝑁𝐵), and migration rates (𝑀𝐴𝐵 and 𝑀𝐵𝐴, in ex‑
pected number of migrants per generation). This ap‑
pears to be a natural approach to take if one recognizes
the arbitrariness in species status of allopatric popula‑
tions. Population parameters can be estimated under the
MSC from genomic data, with the stochastic fluctuation
of the coalescent process and the phylogenetic uncer‑
tainty in genealogical trees accommodated (Jiao et al.
2021).

Jackson et al. (2017) introduced such a criterion, called
the genealogical divergence index (𝑔𝑑𝑖), by considering the
probability that 2 sequences sampled from population
𝐴 (𝑎1 and 𝑎2) coalesce before either of them coalesces
with a sequence (𝑏) sampled from population 𝐵 (Fig. 1).
When 𝑎1 and 𝑎2 coalesce first, the resulting gene tree
has the topology 𝐺1 = ((𝑎1, 𝑎2), 𝑏). Let its probability
be 𝑃1 = ℙ(𝐺1). In the case of no gene flow between 𝐴
and 𝐵, this is given as

𝑃1 = 1 − 2
3 e−2𝜏𝐴𝐵/𝜃𝐴 = 1 − 2

3 e−𝑇𝐴𝐵/2𝑁𝐴 . (1)

The parameter vector is Θ = (𝜏𝐴𝐵, 𝜃𝐴, 𝜃𝐵, 𝜃𝐴𝐵), with
𝜏𝐴𝐵 = 𝑇𝐴𝐵𝜇 and 𝜃𝐴 = 4𝑁𝐴𝜇, where 𝑇𝐴𝐵 is the

FIGURE 1. Three possible gene trees for a locus with 2 𝐴 sequences
and 1 𝐵 sequence: 𝐺1 = ((𝑎1, 𝑎2), 𝑏); 𝐺2 = ((𝑎2, 𝑏), 𝑎1); and 𝐺3 =
((𝑏, 𝑎1), 𝑎2). If the first coalescence (occurring at time 𝑡1) is more re‑
cent than the population divergence (𝜏𝐴𝐵), the gene trees are labelled
𝐺1𝑎, 𝐺2𝑎, and 𝐺3𝑎; otherwise they are labelled 𝐺1𝑏, 𝐺2𝑏, and 𝐺3𝑏.
Note that if there is no gene flow between 𝐴 and 𝐵 gene trees 𝐺2𝑎
and 𝐺3𝑎 (grayed out) are impossible.
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population split time in generations, 𝑁𝐴 is the popula‑
tion size of 𝐴, and 𝜇 is the mutation rate per site per
generation. Both 𝜏𝐴𝐵 and 𝜃𝐴 are measured in expected
number of mutations per site. 𝑃1 is a simple function
of 2𝜏𝐴𝐵/𝜃𝐴 = 𝑇𝐴𝐵/(2𝑁𝐴), which is known as branch
length in coalescent units since it takes on average 2𝑁𝐴
generations for 2 sequences from population 𝐴 to co‑
alesce. As 𝑃1 ranges from 1

3 (at 𝜏𝐴𝐵 = 0, when pop‑
ulations 𝐴 and 𝐵 are at panmixia) to 1 (at 𝜏𝐴𝐵 → ∞,
when 𝐴 and 𝐵 are completely isolated), Jackson et al.
(2017) rescaled it so that the resulting index ranges
from 0 to 1:

𝑔𝑑𝑖 =
𝑃1 − 1

3
1 − 1

3
= 1 − e−2𝜏𝐴𝐵/𝜃𝐴 = 1 − e−𝑇𝐴𝐵/2𝑁𝐴 . (2)

Based on a meta‑analysis of data from Pinho and
Hey (2010), Jackson et al. (2017) suggested the rule of
thumb that populations 𝐴 and 𝐵 should be considered
a single species if 𝑔𝑑𝑖 < 0.2, or 2 distinct species if
𝑔𝑑𝑖 > 0.7. Intermediate values (0.2 < 𝑔𝑑𝑖 < 0.7) indi‑
cate ambiguous species status. Note that from Equation
(2), 𝑔𝑑𝑖 = 0.2 and 0.7 correspond to gene‑tree proba‑
bilities ℙ(𝐺1) = 0.47 and 0.8, respectively, or to split
times 𝑇𝐴𝐵/(2𝑁𝐴) = 0.22 and 1.20 coalescent units,
respectively.

Leaché et al. (2019) described a hierarchical merge al‑
gorithm for species delimitation based on 𝑔𝑑𝑖. Given a
set of populations and a guide tree for them, the pro‑
cedure attempts to merge, progressively, 2 populations
into 1 species, judged by 𝑔𝑑𝑖. Here, we develop a python
pipeline to automate the procedure, called Hierarchical
Heuristic Species Delimitation (HHSD). We include a hi‑
erarchical split algorithm as well. The hierarchical pro‑
cedure of Leaché et al. (2019) relied on the MSC model
without gene flow. In our pipeline, we account for gene
flow by using the MSC‑M model implemented recently
in BPP (Flouri et al. 2023).

We first discuss the definition and computation of 𝑔𝑑𝑖
under the MSC‑M model, and then describe the algo‑
rithms implemented in HHSD. We examine the behavior
of the 𝑔𝑑𝑖 under several simple models of gene flow. We
demonstrate our pipeline by analyzing a dataset simu‑
lated under an isolation‑by‑distance model, both under
the MSC model with no gene flow and under the MSC‑
M model accommodating gene flow. Finally, we apply
the pipeline to 3 empirical datasets, for giraffes, milk‑
snakes, and sunfish and discuss the results in relation to
existing delimitations.

THEORY AND METHODS

Redefining the 𝑔𝑑𝑖 to accommodate complex migration
patterns

The definition of Equation (2) works when popula‑
tions 𝐴 and 𝐵 are completely isolated with no gene flow.
When 𝐴 and 𝐵 exchange migrants, the gene trees can

FIGURE 2. a) An MSC‑M model for 2 species or populations (𝐴, 𝐵)
showing the parameters. The 2 populations diverged time 𝜏𝐴𝐵 ≡ 𝜏
ago and have since been exchanging migrants at the rate of 𝑀𝐴𝐵 =
𝑚𝐴𝐵𝑁𝐵 migrants per generation from 𝐴 to 𝐵 (under the real‑world
view with time running forward) and at the rate 𝑀𝐵𝐴 = 𝑚𝐵𝐴𝑁𝐴
from 𝐵 to 𝐴. b) Two gene trees, each for 2 𝐴 sequences and 1 𝐵 se‑
quence (𝑎1, 𝑎2, 𝑏). In the blue tree (solid lines), 𝑎1 and 𝑎2 coalesce
first (at time 𝑡1), in population 𝐴, resulting in the gene tree 𝐺1 =
((𝑎1, 𝑎2), 𝑏). This is 𝐺1𝑎 of Figure 1. In the red tree (dotted lines), 𝑎2
“migrates” (i.e., is traced back) into 𝐵 at time 𝑠1 and coalesces with 𝑏
in 𝐵 at time 𝑡1, resulting in the gene tree 𝐺2 = ((𝑎2, 𝑏), 𝑎1). This is
𝐺2𝑎 of Figure 1.

be modelled using the migration (MSC‑M) model, with
6 parameters, Θ = (𝜏𝐴𝐵, 𝜃𝐴, 𝜃𝐵, 𝜃𝐴𝐵, 𝑀𝐴𝐵, and 𝑀𝐵𝐴)
(Fig. 2a). Similarly to the case of no gene flow, Jackson
et al. (2017) defined 𝑃1 = ℙ(𝐺1∣Θ) to be the probability
of gene tree 𝐺1, and rescaled it to define the 𝑔𝑑𝑖 as

𝑔𝑑𝑖J = 𝑃1 − min(𝑃1)
max(𝑃1) − min(𝑃1) . (3)

The limits min(𝑃1) = 1/3 and max(𝑃1) = 1 are used in
the CalculateGdi function in PHRAPL (Jackson et al. 2017),
which estimates 𝑃1 by using Hudson’s (2002) MS pro‑
gram to simulate gene trees. When there is gene flow
the minimum value achievable by 𝑃1 depends on the
migration events allowed in the model and on how the
parameters in the model change, and it is possible for
𝑃1 to be < 1/3, in which case the definition of Equation
(3) with min(𝑃1) = 1/3 leads to negative 𝑔𝑑𝑖 values. We
describe 2 such scenarios below.

One approach to dealing with negative 𝑔𝑑𝑖 values is
to set them to 0. Another is to modify the definition of
Jackson et al. (2017). We note that with no gene flow,
Equation (2) is simply the probability for gene tree 𝐺1𝑎
(Fig. 1), or the probability that the first coalescence is be‑
tween 𝑎1 and 𝑎2 and that this coalescence occurs before
population split when we trace the genealogy of the 3
sequences backwards in time. In other words, we may
define 𝑔𝑑𝑖 as

𝑔𝑑𝑖K = ℙ(𝐺1𝑎∣Θ) (4)

under both the MSC model with no gene flow and the
MSC‑M model with gene flow. There is then no need for
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FIGURE 3. a) Hierarchical merge and b) hierarchical split algorithms applied to the same guide tree for 4 populations. The merge algorithm
groups sister populations into 1 species only if 𝑔𝑑𝑖 < 0.2, while the split algorithm splits 1 species into 2 only if 𝑔𝑑𝑖 > 0.7. Because of the
different cutoffs used, the merge algorithm may suggest more species than the split algorithm.

rescaling as ℙ(𝐺1𝑎) ranges from 0 to 1. This definition
is expected to work if 𝐴 and 𝐵 are non‑sister lineages,
and if there is gene flow from other populations into ei‑
ther 𝐴 or 𝐵 (see below for examples). The definition may
also work if gene flow occurs in pulses as in the MSC‑I
model (Flouri et al. 2020), although this is not pursued
here. With no gene flow, the 2 definitions (𝑔𝑑𝑖J and 𝑔𝑑𝑖K)
are equivalent but they may differ if there is gene flow.

An ambiguity arises when 𝑔𝑑𝑖 can be calculated with
reference both to 𝐴 (using 𝑎𝑎𝑏 data or sequences 𝑎1, 𝑎2, 𝑏)
and to 𝐵 (using 𝑎𝑏𝑏 data or sequences 𝑎, 𝑏1, 𝑏2), leading
to 2 indexes,

𝑔𝑑𝑖𝐴 = 1 − e−2𝜏𝐴𝐵/𝜃𝐴 = 1 − e−𝑇𝐴𝐵/2𝑁𝐴 ,
𝑔𝑑𝑖𝐵 = 1 − e−2𝜏𝐴𝐵/𝜃𝐵 = 1 − e−𝑇𝐴𝐵/2𝑁𝐵

(5)

in the case of no gene flow (cf Equation (2)). If 𝑁𝐴 ≪ 𝑁𝐵,
population 𝐴 may appear to be a distinct species from
𝐵 judged by 𝑔𝑑𝑖𝐴, but 𝐵 may not appear to be a distinct
species from 𝐴 according to 𝑔𝑑𝑖𝐵 (Leaché et al. 2019). An‑
other major factor for such conflicting 𝑔𝑑𝑖 indexes is the
asymmetry in gene flow (𝑀𝐴𝐵 ≠ 𝑀𝐵𝐴; see below). In
our implementation, a merge is accepted if either 𝑔𝑑𝑖𝐴
or 𝑔𝑑𝑖𝐵 is less than the cut‑off (0.2), whereas in the split
algorithm, the split is accepted if both indexes are >0.5
and at least one of them is >0.7.

The Hierarchical Merge and Split Algorithms
The hierarchical merge and split algorithms are il‑

lustrated in Figure 3. Both require the specification of

a guide tree, possibly with gene flow. This may be
based on the prior knowledge of the taxonomist or
previous phylogenetic analyses of genetic or morpho‑
logical data. We assume that specimens or samples
are already assigned to populations, which represent
potentially distinct species. Our algorithms may group
different populations into 1 species but never separate 1
population into multiple species. Prior knowledge may
be used to specify migration events involving extant or
extinct species/populations on the guide tree.

In the merge algorithm, we progressively group pop‑
ulations into the same species, starting from the tips of
the tree and moving toward the root. A merge is ac‑
cepted if either of the 2 𝑔𝑑𝑖 indexes (Equation (5)) is <0.2.
The algorithm stops when no population pair can be
merged (Fig. 3a).

In the hierarchical split algorithm, we start from the
model of 1 species and progressively split each species
into distinct species, starting from the root and moving
toward the tips of the guide tree (Fig. 3b). The split is ac‑
cepted if both 𝑔𝑑𝑖 indexes (Equation (5)) are >0.5 and at
least one is >0.7. The algorithm stops when no species
can be split (Fig. 3b).

The merge and split algorithms are implemented un‑
der both the MSC model with no gene flow (Rannala
and Yang 2003; Flouri et al. 2018) and the MSC‑M model
with migration (Flouri et al. 2023). Under the MSC‑M
model, we retain the migration event in the merge al‑
gorithm when at least 1 of the 2 merged populations is
involved in migration with a third species. For example,
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in the guide tree of Figure 3a, there is migration from 𝐴
to 𝐵. When 𝐵 and 𝐶 aremerged into 1 species/population
(𝐵𝐶), we retain the migration event (now from popu‑
lation 𝐴 to population 𝐵𝐶). When 𝐴 and 𝐵𝐶 are later
merged, the now intra‑population migration event is
removed.

In analysis of any dataset both the merge and split
algorithms should be applied. We note that the merge
and split algorithms may produce different results,
mainly because of the different cutoffs (0.2 versus 0.7)
and the large interval of indecision (with 0.2 < 𝑔𝑑𝑖 <
0.7), not because of the different algorithms (merge ver‑
sus split). Under the model of no gene flow and if the
𝑔𝑑𝑖 for each internal node is smaller than that for its
mother node, the merge and split algorithms using the
same cut‑off will arrive at the same model of delimi‑
tation and phylogeny. Thus, one could run the merge
(or split) algorithm alone, but twice, using the 2 cutoffs
(0.2 and 0.7), and obtain the same 2 sets of results as our
merge and split algorithms. It is also possible to use the
cutoff 0.7 for merge and 0.2 for split, in which case the
merge algorithm may delimit fewer species than split
(an example is shown in Supplementary Table S2). In
our current approach, the merge algorithm may infer
more species than the split algorithm and the approach
has a computational advantage as it may involve fewer
BPP runs. Of course, this reasoning serves as a rough
guide only, as it may not apply when there is gene flow
in the model and when a mother node has a smaller 𝑔𝑑𝑖
than a daughter node.

Computation of 𝑔𝑑𝑖 Given Model Parameters
Given the parameters in the MSC or MSC‑M models,

we use different methods to calculate 𝑔𝑑𝑖, depending on
the presence and types of migration events involving
the focal populations 𝐴 and 𝐵. We consider 3 cases: (a)
no gene flow into 𝐴 or 𝐵, (b) gene flow between 𝐴 and
𝐵 but not from any other populations, and (c) gene flow
from other populations into at least one of 𝐴 and 𝐵.

(a) In case of no gene flow into 𝐴 or 𝐵, 𝑔𝑑𝑖J and 𝑔𝑑𝑖K
are equivalent and Equation (4) simplifies to Equation
(2), which is used in the calculation. Note that gene
flow from populations 𝐴 and 𝐵 into a third population
does not affect our calculation of 𝑔𝑑𝑖 for 𝐴 and 𝐵 or our
assessment of the species status of 𝐴 and 𝐵.

(b) If there is migration between 𝐴 and 𝐵 but no
gene flow from any other population into 𝐴 or 𝐵,
we use the Markov chain theory developed in the
structured coalescent to calculate 𝑔𝑑𝑖K = ℙ(𝐺1𝑎)
analytically.

Given 2 populations (𝐴 and 𝐵) with gene flow, the
process of coalescent and migration when one traces the
genealogical history of the sample (of sequences 𝑎1, 𝑎2, 𝑏)
backwards in time can be described by a Markov chain,
in which the states are specified by the number of se‑
quences remaining in the sample and the population
IDs (𝐴 and 𝐵) and sequence IDs (𝑎1, 𝑎2, 𝑏) (Supplemen‑
tary Table S1) (Hobolth et al. 2011; Zhu and Yang 2012;

Jiao and Yang 2021). The initial state is 𝐴𝑎1
𝐴𝑎2

𝐵𝑏, with 3
sequences 𝑎1, 𝑎2, 𝑏 in populations 𝐴, 𝐴, and 𝐵, respec‑
tively. This is also written “𝐴𝐴𝐵”. State 𝐴𝑎1𝑎2

𝐵𝑏, ab‑
breviated “𝐴𝐵𝑏,” means that sequences 𝑎1 and 𝑎2 have
already coalesced so that 2 sequences remain in the sam‑
ple, with the ancestor of 𝑎1 and 𝑎2 in 𝐴 while 𝑏 is in 𝐵.
Finally state 𝐴|𝐵 is an artificial absorbing state, in which
all 3 sequences have coalesced with the sole ancestral
sequence in either 𝐴 or 𝐵. There are 21 states in the
Markov chain, with the transition rate (generator) ma‑
trix 𝑄 = {𝑞𝑖𝑗} given in Supplementary Table S1 (Leaché
et al. 2019).

The transition probability matrix over time 𝑡 is then
𝑃(𝑡) = {𝑝𝑖𝑗(𝑡)} = e𝑄𝑡, where 𝑝𝑖𝑗(𝑡) is the probability that
the Markov chain is in state 𝑗 at time 𝑡 (in the past) given
that it is in state 𝑖 at time 0 (the present time). Suppose
𝑄 has the spectral decomposition

𝑞𝑖𝑗 =
21
∑
𝑘=1

𝑢𝑖𝑘𝑣𝑘𝑗𝜆𝑘, (6)

where 0 = 𝜆1 > 𝜆2 ≥ ⋯ ≥ 𝜆21 are the eigenvalues of 𝑄,
and columns in 𝑈 = {𝑢𝑖𝑗} are the corresponding right
eigenvectors, with 𝑉 = {𝑣𝑖𝑗} = 𝑈−1. Then

𝑝𝑖𝑗(𝑡) =
21
∑
𝑘=1

𝑢𝑖𝑘𝑣𝑘𝑗 e𝜆𝑘𝑡 . (7)

Gene tree 𝐺1𝑎 arises if sequences 𝑎1 and 𝑎2 co‑
alesce first and before 𝜏 (as in the blue gene tree
of Fig. 2b), and the coalescence can occur in either
populations 𝐴 or 𝐵. The coalescent time 𝑡 has the
density

𝑓 (𝑡) = [𝑝𝐴𝐴𝐵,𝐴𝐴𝐴(𝑡) + 𝑝𝐴𝐴𝐵,𝐴𝐴𝐵(𝑡)] 2
𝜃𝐴

+ [𝑝𝐴𝐴𝐵,𝐵𝐵𝐴(𝑡) + 𝑝𝐴𝐴𝐵,𝐵𝐵𝐵(𝑡)] 2
𝜃𝐵

, 𝑡 < 𝜏.
(8)

The 2 terms in the sum correspond to the coalescence
occurring in 𝐴 and 𝐵, respectively. For example, the
first term is the probability that both 𝑎1 and 𝑎2 are in
𝐴 right before time 𝑡 (corresponding to states 𝐴𝐴𝐴 or
𝐴𝐴𝐵), 𝑝𝐴𝐴𝐵,𝐴𝐴𝐴(𝑡) + 𝑝𝐴𝐴𝐵,𝐴𝐴𝐵(𝑡), times the coalescent
rate 2/𝜃𝐴. Similarly the second term is the probability
density that 𝑎1 and 𝑎2 coalesce at time 𝑡 in 𝐵, given by
the probability that 𝑎1 and 𝑎2 are in 𝐵 right before time
𝑡 times the coalescent rate 2/𝜃𝐵.

By averaging over the distribution of 𝑡, we have

𝑔𝑑𝑖K = ℙ(𝐺1𝑎) = ∫
𝜏

0
𝑓 (𝑡) d𝑡. (9)

To calculate the integral in Equation (9), note that from
Equation (7),

∫
𝜏

0
𝑝𝑖𝑗(𝑡) d𝑡 = 𝑢𝑖1𝑣1𝑗𝜏 +

21
∑
𝑘=2

𝑢𝑖𝑘𝑣𝑘𝑗
e𝜆𝑘𝜏 −1

𝜆𝑘
. (10)
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Furthermore, the probability for gene tree 𝐺1𝑏 (Fig. 1)
is

ℙ(𝐺1𝑏) = 𝑝𝐴𝐴𝐵,𝑠3
(𝜏) × 1

3 , (11)

where 𝑠3 = {𝐴𝐴𝐴, 𝐴𝐴𝐵, 𝐴𝐵𝐴, 𝐴𝐵𝐵, 𝐵𝐴𝐴, 𝐵𝐴𝐵, 𝐵𝐵𝐴,
𝐵𝐵𝐵} is the set of states with 3 sequences. For 𝐺1𝑏 to oc‑
cur, there must be no coalescence in the time interval
(0, 𝜏) and all 3 sequences must reach time 𝜏, and then
the 3 sequences coalesce in random order. Thus

ℙ(𝐺1) = ℙ(𝐺1𝑎) + ℙ(𝐺1𝑏), (12)

from which 𝑔𝑑𝑖J (Equation (3)) can be calculated.
(c) When populations 𝐴 or 𝐵 are recipients of gene

flow from other populations, analytical calculation of
the 𝑔𝑑𝑖 becomes complicated. It is simpler to simulate
a large number (106 or 107, say) of gene trees under
the migration model. Note that other populations on the
guide tree than the focal populations 𝐴 and 𝐵 may con‑
tribute migrants into 𝐴 or 𝐵. Parameters in the MSC‑M
model (𝜏s, 𝜃s, and 𝑀) involving all those populations
are estimated by BPP from the data. Gene trees for only
3 sequences (𝑎1, 𝑎2, 𝑏) are then simulated, with no sam‑
ples taken from other populations (see Supplementary
Fig. S1 for an example control file for such simulation).
The 𝑔𝑑𝑖K is simply the proportion for gene tree 𝐺1𝑎,
that is, 𝐺1 with 𝑡1 < 𝜏𝐴𝐵, among simulated gene trees
(Fig. 1):

𝑔𝑑𝑖K = ℙ(𝐺1𝑎) ≈ # of gene tree 𝐺1𝑎
𝑅 , (13)

where 𝑅 is the number of replicate loci or gene trees.
Note that in cases (a) and (b), one could also use

simulation to calculate 𝑔𝑑𝑖, but the analytical calcu‑
lation is more accurate and computationally more
efficient.

Uncertainty in 𝑔𝑑𝑖
The above describes the calculation of 𝑔𝑑𝑖 given the

parameters in the model (either with or without gene
flow). In real data analysis, parameters are estimated
from the sequence data and involve uncertainties due
to the finite nature of data. A simple approach is to
use the posterior means of parameters to calculate 𝑔𝑑𝑖.
A more proper approach is to treat 𝑔𝑑𝑖 as a function
of the parameters and generate its posterior distribu‑
tion and to use the posterior mean of 𝑔𝑑𝑖 in the al‑
gorithm. The 2 approaches should be very similar if
the dataset is informative and the parameters are well
estimated.

Let {Θ(𝑖)} be the parameter values sampled from the
MCMC (with the definition of Θ depending on the
model). Then for each 𝑖, calculate 𝑔𝑑𝑖(𝑖) = 𝑔𝑑𝑖(Θ(𝑖))
using 1 of the 3 approaches discussed in the last sub‑
section. These 𝑔𝑑𝑖(𝑖) values constitute a sample from
the posterior distribution and can be used to calculate
the posterior mean, and can also be sorted to generate

the 95% equal‑tail credible interval (CI). The 95% high‑
est probability density (HPD) CI can be calculated by
sliding the 95% equal‑tail CI to the left and to the right
until the induced interval cannot be made shorter, re‑
lying on the fact that the HPD interval is the shortest
(Chen and Shao 1999; see Fig. 7.14 in Yang 2014). We
implemented a simple algorithm under the assumption
that the HPD CI consists of 1 interval rather than several
non‑overlapping subintervals. Note that for the MSC‑
M model involving gene flow from other populations
into 𝐴 or 𝐵 (case c), this procedure involves simulating
many gene trees for each set of parameters Θ(𝑖). Thus,
we may “thin” the MCMC sample to use only 1000 sets
of parameter values.

Implementation of HHSD
Our pipeline creates control files and Imap files to

drive the analyses using BPP (an Imap file maps individ‑
ual samples to species/populations under the specified
species‑delimitation hypothesis). It then examines the
BPP output to calculate 𝑔𝑑𝑖 to attempt to merge popu‑
lations or split species. If any merge (or split) occurs the
species tree is modified and new BPP control and Imap
files are generated for the next iteration of the hierarchi‑
cal algorithm. The pipeline is itself driven by a control
file. Many of the control variables are the same as used in
BPP, and the same syntax is used between the 2 programs
as much as possible.

Here, we illustrate our pipeline through an analy‑
sis of a multilocus sequence dataset simulated under
the isolation‑by‑distance model of Figure 4a (Leaché
et al. 2019). The HHSD control file is shown in Figure 5.
There are 5 populations, with 𝐴, 𝐵, 𝐶, 𝐷 representing
populations of a species with a wide geographic dis‑
tribution, while 𝑋 is a new species that split off from
population 𝐴. There is extensive gene flow between any
2 neighbouring populations of species 𝐴𝐵𝐶𝐷, with mi‑
gration rate 𝑀 = 𝑁𝑚 = 2 immigrants per generation,
whereas there is no gene flow involving 𝑋 (Fig. 4a).
The data consisted of 𝐿 = 2000 loci, with 𝑆 = 4
sequences per species per locus, and 500 sites in the
sequence.

The guide tree of Figure 4b, which is the starting de‑
limitation for the merge algorithm, was generated using
species tree estimation under the MSC model with no
gene flow (i.e., the A01 analysis of Yang 2015). A man‑
ual run of the procedure is recorded in Supplementary
Table S2 (using the cutoff 𝑔𝑑𝑖 < 0.2). The HHSD pipeline
provides feedbacks about the current species delimita‑
tion and the decisions made during each iteration of the
algorithm (Fig. 4c and Supplementary Fig. S2). In the
first iteration, attempt was made to merge populations
𝐴 and 𝐵, and 𝐶 and 𝐷. As 𝑔𝑑𝑖 < 0.2 for each pair, both
merges were accepted. In the second iteration, a merge
between 𝐴𝐵 and 𝐶𝐷 was attempted, and again this was
accepted. In the third iteration, a merge between the pair
𝐴𝐵𝐶𝐷 and 𝑋 was attempted. As 𝑔𝑑𝑖 > 0.2, the merge

https://doi.org/10.5061/dryad.jm63xsjhc
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FIGURE 4. a) An isolation‑by‑distance model in which popula‑
tions 𝐴, 𝐵, 𝐶, and 𝐷 represent geographical populations of the same
species, while population 𝑋 is a distinct species that split from
and remains in complete isolation with population 𝐴. The model is
used to simulate multilocus sequence data. The parameters used are
𝜏𝑋𝐴𝐵𝐶𝐷 = 0.04, 𝜏𝑋𝐴𝐵𝐶 = 0.03, 𝜏𝑋𝐴𝐵 = 0.02, and 𝜏𝑋𝐴 = 0.01 for
divergence times, and 𝜃 = 0.01 for all populations, with 𝑀 = 𝑁𝑚 = 2
between any 2 adjacent populations of the species 𝐴𝐵𝐶𝐷. Redrawn
after Leaché et al. (2019, Fig. 5). b) Incorrect species delimitation and
phylogeny produced in Bayesian model selection using BPP under
the MSC model assuming no gene flow, with every node receiving
100% posterior support. c) Output from the HHSD pipeline applying
the merge algorithm under the MSC model to the simulated data (see
Fig. 5 for the control file). The species tree of panel b) is used as the
guide tree (initial delimitation). A merge is accepted if either 𝑔𝑑𝑖𝐴
or 𝑔𝑑𝑖𝐵 is < 0.2. The algorithm recognizes 2 species: 𝑋 and 𝐴𝐵𝐶𝐷.
d) Output from the split algorithm. A split is accepted if both 𝑔𝑑𝑖𝐴
and 𝑔𝑑𝑖𝐵 are >0.5 and at least one of them is >0.7. The algorithm in‑
fers 1 species (𝑋𝐴𝐵𝐶𝐷). The same data were also analyzed under the
MSC‑M model; see Supplementary Table S3 and text.

was rejected. The final delimitation had 2 species, 𝐴𝐵𝐶𝐷
and 𝑋.

Behavior of the 𝑔𝑑𝑖 Under Models of Gene Flow
The pattern of gene flow under the MSC‑M model

may be very complex in terms of the number of gene‑
flow events, the lineages involved, and the directions
and rates of gene flow. Gene flow is also known to ex‑
ert profound impacts on the genealogical history of se‑
quences sampled from modern species (Leaché et al.
2014; Long and Kubatko 2018; Jiao et al. 2020; Jiao
and Yang 2021). Here, we characterize the behavior
of the 𝑔𝑑𝑖 under a few simple scenarios of gene flow,

FIGURE 5. Control file (simulated_merge_analysis.txt) for HHSD
merge analysis of the data simulated under the model of Figure 4a.
The control variables are as follows: output_directory specifies the
output directory in which result files will be written; seqfile is the
sequence alignment file in PHYLIP format; Imapfile specifies the as‑
signment of individuals to populations; guide_tree is a Newick rep‑
resentation of the guide tree; and mode specifies the algorithm (merge
or split). GDI_threshold specifies the 𝑔𝑑𝑖 value below which 2 pop‑
ulations are merged into 1 species. threads specifies the number of
CPU threads used to run BPP, while burnin, sampfreq, and nsample
specify the MCMC settings for running BPP. Run HHSD using the com‑
mand
hhsd --cfile simulated_merge_analysis.txt

and leave it to the future to explore more complex
models.

Case (a) Symmetrical migration model for 2 populations.—
The symmetrical migration model for 2 populations,
with 𝑁𝐴 = 𝑁𝐵 = 𝑁 and 𝑀𝐴𝐵 = 𝑀𝐵𝐴 = 𝑀 (Fig. 2a),
has been used by Jackson et al. (2017) and Leaché et al.
(2019) to calculate 𝑔𝑑𝑖J (Equation (3)). Under this model,
both 𝑔𝑑𝑖J and 𝑔𝑑𝑖K are functions of 2 parameters: 2𝜏/𝜃 =
𝑇/(2𝑁) and 𝑀. In Figure 6 we plot 𝑔𝑑𝑖J and 𝑔𝑑𝑖K for a
range of values for those 2 parameters. Overall large
population split time and low migration rate corre‑
spond to high gdi values and the species status of the
2 populations.

The 2 definitions (𝑔𝑑𝑖J and 𝑔𝑑𝑖K) are very similar in the
whole parameter space except for the Northeast corner
where both the migration rate and population split time
are large. In such a scenario, the 2 populations should be
considered 1 species according to 𝑔𝑑𝑖J (Fig. 6a), while the
species status is ambiguous according to 𝑔𝑑𝑖K (Fig. 6b).
The 2 indexes represent different biological interpreta‑
tions of the same population divergence history, akin
to 2 species concepts. We leave it to the future to eval‑
uate which of them better matches the experience and
expectation of taxonomists.

https://doi.org/10.5061/dryad.jm63xsjhc
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FIGURE 6. [Case a] a) 𝑔𝑑𝑖J and b) 𝑔𝑑𝑖K plotted against the population split time in coalescent units (2𝜏/𝜃 = 𝑇/2𝑁) and the population
migration rate (𝑀 = 𝑁𝑚) under the symmetrical migration model for 2 populations, with 𝜃𝐴 = 𝜃𝐵 = 𝜃 and 𝑀𝐴𝐵 = 𝑀𝐵𝐴 = 𝑀 (Fig. 2a).
The cut‑offs at 0.2 and 0.7 are indicated by red contour lines. The green circles (between populations) and red dots (between species) represent
median values of empirical estimates from major taxonomic groups (mammals, birds, insects, and plants) from the meta‑analysis of Jackson
et al. (2017, Fig. 6), based on data compiled by Pinho and Hey (2010, Supplementary Table S1). Panel a) is a transformation of ℙ(𝐺1) of Leaché
et al. (2019, Fig. 3) using Equation (2). Under this symmetrical MSC‑M model, there is no difference between 𝑔𝑑𝑖𝐴 and 𝑔𝑑𝑖𝐵 of Equation (5) and
also 𝑔𝑑𝑖J is always > 0.
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Case (b) Asymmetrical gene flow between 2 populations.—
Next, we consider an MSC‑M model of unidirectional
gene flow for 2 populations, with 𝑀𝐵𝐴 > 0 and 𝑀𝐴𝐵 =
0. This is a special case of the general model of Figure 2a
considered in the Theory section and is analytically
tractable. To track the history of sequences 𝑎1, 𝑎2, 𝑏 up
to the split time 𝜏, we use the generator matrix 𝑄(1) of
Jiao and Yang (2021):

𝐴𝐴𝐵 𝐴𝐵𝐵 𝐵𝐴𝐵 𝐵𝐵𝐵 𝐴𝐵𝑏 𝐴𝑎1
𝐵 𝐴𝑎2

𝐵 𝐵𝐵𝑏 𝐵𝑎1
𝐵 𝐵𝑎2

𝐵 𝐵
𝐴𝐴𝐵 −2𝜛 − 𝑐𝐴 𝜛 𝜛 0 𝑐𝐴 0 0 0 0 0 0
𝐴𝐵𝐵 0 −𝜛 − 𝑐𝐵 0 𝜛 0 𝑐𝐵 0 0 0 0 0
𝐵𝐴𝐵 0 0 −𝜛 − 𝑐𝐵 𝜛 0 0 𝑐𝐵 0 0 0 0
𝐵𝐵𝐵 0 0 0 −3𝑐𝐵 0 0 0 𝑐𝐵 𝑐𝐵 𝑐𝐵 0
𝐴𝐵𝑏 0 0 0 0 −𝜛 0 0 𝜛 0 0 0
𝐴𝑎1

𝐵 0 0 0 0 0 −𝜛 0 0 𝜛 0 0
𝐴𝑎2

𝐵 0 0 0 0 0 0 −𝜛 0 0 𝜛 0
𝐵𝐵𝑏 0 0 0 0 0 0 0 −𝑐𝐵 0 0 𝑐𝐵
𝐵𝑎1

𝐵 0 0 0 0 0 0 0 0 −𝑐𝐵 0 𝑐𝐵
𝐵𝑎2

𝐵 0 0 0 0 0 0 0 0 0 −𝑐𝐵 𝑐𝐵
𝐵 0 0 0 0 0 0 0 0 0 0 0

where 𝜛 = 4𝑀/𝜃𝐴 = 𝑚𝐵𝐴/𝜇, 𝑐𝐴 = 2/𝜃𝐴, and 𝑐𝐵 = 2/𝜃𝐵.
Let 𝑃(𝑡) = {𝑝𝑖𝑗(𝑡)} = e𝑄𝑡. To derive 𝑔𝑑𝑖K = ℙ(𝐺1𝑎), let

𝑡 < 𝜏 be the coalescent time for sequences 𝑎1 and 𝑎2. As
in Equation (8), this has density

𝑓 (𝑡) = 𝑝𝐴𝐴𝐵,𝐴𝐴𝐵(𝑡) ⋅ 𝑐𝐴 + 𝑝𝐴𝐴𝐵,𝐵𝐵𝐵(𝑡) ⋅ 𝑐𝐵, 𝑡 < 𝜏, (14)

where the 2 terms represent coalescence in populations
𝐴 and 𝐵, respectively. Then

ℙ(𝐺1𝑎) = ∫
𝜏

0
𝑓 (𝑡) d𝑡

=
4𝑒1𝜃2

𝐵𝑀2

3(𝑀𝜃𝐵 − 𝜃𝐴)(3𝜃𝐴 − 𝜃𝐵 − 4𝑀𝜃𝐵)

+
4𝑒2𝜃𝐴𝜃2

𝐵𝑀2

(𝜃𝐴 − 𝑀𝜃𝐵)(𝜃𝐴 + 2𝑀𝜃𝐵)(𝜃𝐴 − 2𝑀𝜃𝐵 − 𝜃𝐵)

+ 3𝜃𝐴 + 2𝑀(4𝑀 + 3)𝜃𝐵
3(1 + 4𝑀)(𝜃𝐴 + 2𝑀𝜃𝐵) − 𝑒3

1 + 4𝑀

− 8𝑒3𝜃𝐴𝜃𝐵𝑀2

(𝜃𝐴 − 𝜃𝐵 − 2𝑀𝜃𝐵)(3𝜃𝐴 − 𝜃𝐵 − 4𝑀𝜃𝐵)(1 + 4𝑀) ,
(15)

where 𝑒1 = exp{−6𝜏/𝜃𝐵}, 𝑒2 = exp{−4𝑀𝜏/𝜃𝐴 − 2𝜏/𝜃𝐵}
and 𝑒3 = exp{−2(1 + 4𝑀)𝜏/𝜃𝐴}.

Let 𝑠3 = {𝐴𝐴𝐵, 𝐴𝐵𝐵, 𝐵𝐴𝐵, 𝐵𝐵𝐵} be the set of states
with 3 sequences. We have ℙ(𝐺1𝑏) = 𝑝𝐴𝐴𝐵,𝑠3

(𝜏) ⋅ 1/3,
and

ℙ(𝐺1) = ℙ(𝐺1𝑎) + ℙ(𝐺1𝑏) =
4𝜃𝐴𝜃𝐵𝑒3𝑒4(1 + 4𝑀)𝑀 − 𝜃𝐴𝜃𝐵(8𝑀2 − 3) − 𝜃𝐴𝜃𝐵𝑒3(8𝑀2 + 2)

3(1 + 4𝑀)(𝜃𝐴 + 2𝜃𝐵𝑀)(𝜃𝐵 + 2𝜃𝐵𝑀 − 𝜃𝐴)

+
(2𝑒3 − 4𝑀𝑒3 − 3)𝜃2

𝐴 + 2𝜃2
𝐵𝑀(2𝑀 + 1)(4𝑀 + 3 − 2𝑒3)

3(1 + 4𝑀)(𝜃𝐴 + 2𝜃𝐵𝑀)(𝜃𝐵 + 2𝜃𝐵𝑀 − 𝜃𝐴) , (16)

where 𝑒4 = exp{4𝑀𝜏/𝜃𝐴 + 2𝜏/𝜃𝐴 − 2𝜏/𝜃𝐵}.
Both 𝑔𝑑𝑖J and 𝑔𝑑𝑖K are functions of 3 parameters:

2𝜏/𝜃𝐴 = 𝑇/(2𝑁𝐴), 𝑀, and 𝑁𝐴/𝑁𝐵. Figure 7b,c shows
that 𝑔𝑑𝑖J can be negative under this model. If popula‑
tion 𝐴 has a much larger size than 𝐵, the 2 𝐴 sequences
may not coalesce in 𝐴, and 1 of them may migrate into

𝐵 (with time running backwards) and coalesce with se‑
quence 𝑏, resulting in gene trees 𝐺2 = ((𝑎2, 𝑏), 𝑎1) or
𝐺3 = ((𝑏, 𝑎1), 𝑎2). As a result, gene tree 𝐺1 may be
less probable than 𝐺2 or 𝐺3, creating an anomaly: 2 se‑
quences from 𝐴 are on average more distant from each
other than either is from a sequence from 𝐵 (Jiao and
Yang 2021). See also Figure 2a in Jiao and Yang (2021).

In Figure 8a,b, we plot 𝑔𝑑𝑖J and 𝑔𝑑𝑖K against 𝑀 and
2𝜏/𝜃𝐴, with 𝜃𝐴/𝜃𝐵 = 5 fixed (the precise value of 𝜃𝐴
does not matter). In Figure 8c,d, we plot 𝑔𝑑𝑖J and 𝑔𝑑𝑖K
against 𝑀 and 𝜃𝐴/𝜃𝐵, with 𝜏 = 5𝜃𝐵 fixed (the precise
value of 𝜃𝐵 does not matter). The 2 indexes behave in
the same way except in the case of high migration rate
and long divergence time, where 𝑔𝑑𝑖J lumps the 2 pop‑
ulations into 1 species, whereas 𝑔𝑑𝑖K is indecisive. This
is the same pattern as under the symmetrical migration
model of Figure 6.

We also considered the 𝑔𝑑𝑖 with reference to popula‑
tion 𝐵, using sequences 𝑎, 𝑏1, 𝑏2. We use the following
generator matrix 𝑄 until the split time 𝜏:

𝐴𝐵𝐵 𝐵𝐵𝐵 𝐴𝑎𝐵 𝐵𝑎𝐵 𝐵𝐵𝑏1
𝐵𝐵𝑏2

𝐵
𝐴𝐵𝐵 −𝜛 − 𝑐𝐵 𝜛 𝑐𝐵 0 0 0 0
𝐵𝐵𝐵 0 −3𝑐𝐵 0 𝑐𝐵 𝑐𝐵 𝑐𝐵 0
𝐴𝑎𝐵 0 0 −𝜛 𝜛 0 0 0
𝐵𝑎𝐵 0 0 0 −𝑐𝐵 0 0 𝑐𝐵
𝐵𝐵𝑏1

0 0 0 0 −𝑐𝐵 0 𝑐𝐵
𝐵𝐵𝑏2

0 0 0 0 0 −𝑐𝐵 𝑐𝐵
𝐵 0 0 0 0 0 0 0

where 𝜛 = 𝑚𝐵𝐴/𝜇 and 𝑐𝐵 = 2/𝜃𝐵.
Let 𝑃(𝑡) = {𝑝𝑖𝑗(𝑡)} = e𝑄𝑡. The coalescent time 𝑡 < 𝜏

for sequences 𝑏1, 𝑏2 has density

𝑓 (𝑡) = [𝑝𝐴𝐵𝐵,𝐴𝐵𝐵(𝑡) + 𝑝𝐴𝐵𝐵,𝐵𝐵𝐵(𝑡)] ⋅ 𝑐𝐵, 𝑡 < 𝜏, (17)

so that

ℙ(𝐺1𝑎) = ∫
𝜏

0
𝑓 (𝑡) d𝑡

=
3𝜃2

𝐴 − 2𝜃2
𝐵𝑀2 − 𝜃𝐴𝜃𝐵𝑀 − 3𝑒1𝑒2𝜃2

𝐴 + 𝑒1𝜃𝐵𝑀(𝜃𝐴 + 2𝜃𝐵𝑀)
3(𝜃𝐴 − 𝑀𝜃𝐵)(𝜃𝐴 + 2𝑀𝜃𝐵) ,

(18)

where 𝑒1 = exp{−6𝜏/𝜃𝐵} and 𝑒2 = exp{−4𝑀𝜏/𝜃𝐴 +
4𝜏/𝜃𝐵}.

As ℙ(𝐺1𝑏) = [𝑝𝐴𝐵𝐵,𝐴𝐵𝐵(𝜏)+𝑝𝐴𝐵𝐵,𝐵𝐵𝐵(𝜏)]⋅ 1
3 , we have

ℙ(𝐺1) = ℙ(𝐺1𝑎) + ℙ(𝐺1𝑏) = (3 − 2𝑒3)𝜃𝐴 + 2𝑀𝜃𝐵
3(𝜃𝐴 + 2𝑀𝜃𝐵) ,

(19)
where 𝑒3 = exp{−4𝑀𝜏/𝜃𝐴 − 2𝜏/𝜃𝐵}.

Again both 𝑔𝑑𝑖J and 𝑔𝑑𝑖K are functions of 3 pa‑
rameters: 2𝜏/𝜃𝐴 = 𝑇/(2𝑁𝐴), 𝑀, and 𝑁𝐴/𝑁𝐵. In
Figure 9a,b, we plot 𝑔𝑑𝑖J and 𝑔𝑑𝑖K for 𝑎𝑏𝑏 data
(using sequences 𝑎, 𝑏1, 𝑏2) over the same parameter
space as in Figure 8. For 𝑎𝑏𝑏 data, the differences
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FIGURE 7. [Case b, 𝑎𝑎𝑏 data] a) An asymmetrical migration model for 2 populations (𝐴, 𝐵) with migration from 𝐵 to 𝐴. There are 5 param‑
eters in the model, but 𝑔𝑑𝑖J and 𝑔𝑑𝑖K depend on only 3: 2𝜏/𝜃𝐴 = 𝑇/(2𝑁𝐴), 𝑀 = 𝑀𝐵𝐴, and 𝜃𝐴/𝜃𝐵 = 𝑁𝐴/𝑁𝐵. b and c) 𝑔𝑑𝑖J and 𝑔𝑑𝑖K plotted
against 𝑁𝐴/𝑁𝐵 or 𝑀𝐵𝐴, with 𝜏 = 5𝜃𝐵 (the precise value of 𝜃𝐵 does not matter). In b), 𝑀𝐵𝐴 = 1 is fixed, while in c), 𝜃𝐴/𝜃𝐵 = 5 is fixed. When
𝑁𝐴/𝑁𝐵 in b) or 𝑀 in c) is large, the probability for the gene tree 𝐺1 = ((𝑎1, 𝑎2), 𝑏) may be < 1

3 , so that 𝑔𝑑𝑖J < 0.

between 𝑔𝑑𝑖J and 𝑔𝑑𝑖K are small (cf: Fig. 9a,b). How‑
ever, there are large differences between 𝑔𝑑𝑖𝐴 and 𝑔𝑑𝑖𝐵
of Equation (5), reflecting the dramatic influence of
the relative population sizes on the perceived species
status of the populations (cf: Figs. 8c and 9c and
Figs. 8d and 9d). For very small 𝑁𝐴/𝑁𝐵, it is pos‑
sible for 𝑔𝑑𝑖𝐴 > 0.7 and 𝑔𝑑𝑖𝐵 < 0.2. When pop‑
ulation 𝐴 has a much smaller size than population
𝐵, population 𝐴 may appear to be a distinct species
from 𝐵, while population 𝐵 appears to be of the same
species as 𝐴.

Case (c) Gene flow from a ghost species.—Markov chain at
timeIn the model of Figure 10a, populations 𝐴 and 𝐵
have been in complete isolation since they diverged time
𝜏𝐴𝐵 = 𝜏 ago, but a more distant population 𝐶 which di‑
verged at time 𝜏𝐴𝐵𝐶 has been contributing migrants into
population 𝐴 at the rate of 𝑀𝐶𝐴 = 𝑀 migrants per gen‑
eration. We sample sequences 𝑎1 and 𝑎2 from 𝐴 and 𝑏
from 𝐵, with no sample from 𝐶. The genealogical his‑
tory of sequences 𝑎1 and 𝑎2 until time 𝜏 is described by
a Markov chain with 4 states: 𝐴𝐴, 𝐴𝐶, 𝐶𝐶, 𝐴|𝐶, with the
last being an absorbing state after the 2 sequences have
coalesced. The generator matrix 𝑄 is

𝐴𝐴 𝐴𝐶 𝐶𝐶 𝐴|𝐶
𝐴𝐴 −(2𝜛 + 𝑐𝐴) 2𝜛 0 𝑐𝐴
𝐴𝐶 0 −𝜛 𝜛 0
𝐶𝐶 0 0 −𝑐𝐶 𝑐𝐶
𝐴|𝐶 0 0 0 0

where 𝜛 ≡ 𝜛𝐶𝐴 = 𝑚𝐶𝐴/𝜇, 𝑐𝐴 = 2/𝜃𝐴 and 𝑐𝐶 = 2/𝜃𝐶.
The eigenvalues of 𝑄 are 𝜆1 = 0, 𝜆2 = −𝑐𝐶, 𝜆3 =
−𝑐𝐴 − 2𝜛, and 𝜆4 = −𝜛.

Let 𝑃(𝑡) = {𝑝𝑖𝑗(𝑡)} = e𝑄𝑡. Given the initial state 𝐴𝐴,
the transition probabilities into the 4 states over time 𝜏
are

𝑝11 = e−(𝑐𝐴+2𝜛)𝜏 ,

𝑝12 = 2𝜛
𝑐𝐴 + 𝜛 [e−𝜛𝜏 − e−(𝑐𝐴+2𝜛)𝜏],

𝑝13 =
2𝜛2[(𝑐𝐶 − 𝜛) e−(𝑐𝐴+2𝜛)𝜏 −(𝑐𝐴 + 𝜛) e−𝑐𝐶𝜏 +(𝑐𝐴 − 𝑐𝐶 + 2𝜛) e−𝜛𝜏]

(𝑐𝐴 + 𝜛)(𝑐𝐶 − 𝜛)(𝑐𝐴 − 𝑐𝐶 + 2𝜛) ,

𝑝14 = 1 − 𝑝11 − 𝑝12 − 𝑝13 ≡ ℙ(𝐺1𝑎).
(20)

Note that the transition probability 𝑝14(𝜏) is also
𝑔𝑑𝑖K = ℙ(𝐺1𝑎) of Equation (4). The probability for gene
tree 𝐺1 is given by averaging over the 4 possible states
of the Markov chain at time 𝜏,

ℙ(𝐺1) = 𝑝11 × 1
3 + 𝑝12 e−2Δ𝜏/𝜃𝐴𝐵 ×1

3

+ 𝑝13(1 − 2
3 e−2Δ𝜏/𝜃𝐶) + 𝑝14,

(21)

with Δ𝜏 = 𝜏𝐴𝐵𝐶 − 𝜏𝐴𝐵, while ℙ(𝐺2) = ℙ(𝐺3) =
(1 − ℙ(𝐺1))/2. The first term in Equation (21) corre‑
sponds to state 𝐴𝐴, with both 𝑎1 and 𝑎2 remaining in 𝐴
at time 𝜏 (with probability 𝑝11). Then all 3 sequences en‑
ter population 𝐴𝐵 and coalesce in random order, so that
gene tree 𝐺1 occurs with probability 1

3 . The second term
corresponds to state 𝐴𝐶 at time 𝜏, which means that one
of 𝑎1 and 𝑎2 is in 𝐴 with the other in 𝐶. If the sequence
in 𝐴 does not coalesce with 𝑏 in the ancestral population
𝐴𝐵, then gene tree 𝐺1 will occur with probability 1

3 . The
third term corresponds to state 𝐶𝐶, with both 𝑎1 and 𝑎2
in 𝐶 at time 𝜏 (with probability 𝑝13). Then gene tree 𝐺1
arises if 𝑎1 and 𝑎2 coalesce in 𝐶 or in 𝐴𝐵𝐶. The fourth
term, 𝑝14, corresponds to state 𝐴|𝐶, in which 𝑎1 and 𝑎2
have coalesced (in either 𝐴 or 𝐶) before reaching 𝜏 so
that the gene tree is 𝐺1 (also 𝐺1𝑎) (Fig. 1).
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FIGURE 8. [Case b, 𝑎𝑎𝑏 data] a) 𝑔𝑑𝑖J and b) 𝑔𝑑𝑖K for sequences 𝑎1, 𝑎2, 𝑏 under the unidirectional migration model of Figure 7a, plotted against
𝑀 = 𝑀𝐵𝐴 and 2𝜏/𝜃𝐴, with 𝜃𝐴/𝜃𝐵 = 5 (the precise value of 𝜃𝐴 does not matter). c and d) Plots under the same model against 𝑀 and 𝜃𝐴/𝜃𝐵,
with 𝜏 = 5𝜃𝐵. In a) and c), 𝑔𝑑𝑖J < 0 in the white region outside the black contour line.

The MSC‑M model of Figure 10a involves 8 param‑
eters, Θ = (𝜏𝐴𝐵𝐶, 𝜏𝐴𝐵, 𝜃𝐴, 𝜃𝐵, 𝜃𝐶, 𝜃𝐴𝐵, 𝜃𝐴𝐵𝐶, and 𝑀𝐶𝐴),
but the gene‑tree probability ℙ(𝐺1) is a function of 5:
2𝜏/𝜃𝐴 = 𝑇𝐴𝐵/(2𝑁𝐴), 𝑐𝐴/𝑐𝐶 = 𝑁𝐶/𝑁𝐴, 𝑀𝐶𝐴, Δ𝜏/𝜃𝐴𝐵,

and Δ𝜏/𝜃𝐶. The new index 𝑔𝑑𝑖K = ℙ(𝐺1𝑎) is a function
of the first 3 parameters.

As in the unidirectional migration model of Figure 7a,
a similar anomaly arises under the model of Figure 10a
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FIGURE 9. [Case b, for 𝑎𝑏𝑏 data] a) 𝑔𝑑𝑖J and b) 𝑔𝑑𝑖K for sequences 𝑎, 𝑏1, 𝑏2 under the unidirectional migration model of Figure 7a, plotted
against 𝑀 = 𝑀𝐵𝐴 and 2𝜏/𝜃𝐴, with 𝜃𝐴/𝜃𝐵 = 5. c and d) Plots under the same model against 𝑀 and 𝜃𝐴/𝜃𝐵, with 𝜏 = 5𝜃𝐵. The model and
parameter space are the same as in Figure 8 for 𝑎𝑎𝑏 data, and here 𝑔𝑑𝑖J is always positive.

with gene flow from a ghost species (Fig. 10b,c). For ex‑
ample, when the parameters are 𝜏𝐴𝐵𝐶 = 0.01, 𝜏𝐴𝐵 =
0.005, 𝜃𝐴 = 𝜃𝐶 = 0.05, 𝜃𝐴𝐵 = 0.001, and 𝑀𝐶𝐴 = 1,
we have ℙ(𝐺1) = 0.2995 < 1

3 (Equation (21)), giving

𝑔𝑑𝑖J = −0.0508. This is confirmed by simulation [see
Supplementary Fig. S1 for the BPP control file for simu‑
lating gene trees in this case; parameters such as 𝜃𝐴𝐵𝐶 =
0.01 are needed to run the simulation program but do

https://doi.org/10.5061/dryad.jm63xsjhc
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FIGURE 10. [Case c, 𝑎𝑎𝑏 data] a) An MSC‑M model for 3 species (𝐴, 𝐵, 𝐶) with migration from a ghost species 𝐶 to 𝐴. In part of the parameter
space, the probability for the gene tree 𝐺1 = ((𝑎1, 𝑎2), 𝑏) is < 1

3 , with 𝑔𝑑𝑖J < 0 (Equation (3)). b and c) 𝑔𝑑𝑖J and 𝑔𝑑𝑖K plotted against 𝜏𝐴𝐵 or
𝑀𝐶𝐴 with 𝜏𝐴𝐵𝐶 = 0.01, 𝜃𝐴 = 𝜃𝐶 = 0.05, and 𝜃𝐴𝐵 = 0.001. In b), 𝑀𝐶𝐴 = 1 is fixed, while in c), 𝜏𝐴𝐵 = 0.005 is fixed.

not affect ℙ(𝐺1)]. As either of 𝑎1 and 𝑎2 may migrate into
𝐶 (backwards in time), reducing the chance for 𝑎1 and
𝑎2 to coalesce in population 𝐴, gene tree 𝐺1 may be less
probable than 𝐺2 or 𝐺3, with ℙ(𝐺1) < ℙ(𝐺2) = ℙ(𝐺3).

In Figure 11a,b we plot 𝑔𝑑𝑖J and 𝑔𝑑𝑖K against 𝑀𝐶𝐴
and 2𝜏/𝜃, with other parameters fixed at the values of
Figure 10. For those parameter values, 𝑔𝑑𝑖J and 𝑔𝑑𝑖K are
very similar, although 𝑔𝑑𝑖J < 0 in part of the parameter
space.

If we use instead 𝑎𝑏𝑏 data (with sequences 𝑎, 𝑏1, 𝑏2),
we have

ℙ(𝐺1) = 1 − 2
3 e−2𝜏/𝜃𝐵 , ℙ(𝐺1𝑎) = 1 − e−2𝜏/𝜃𝐵 ,

as in the case of no gene flow, and 𝑔𝑑𝑖J = 𝑔𝑑𝑖K.
There is thus a major asymmetry in the 𝑔𝑑𝑖 index

(Equation (5)) under this model: while 𝑔𝑑𝑖𝐴 for 𝑎𝑎𝑏 data
depends on 5 or 3 parameters (for 𝑔𝑑𝑖J and 𝑔𝑑𝑖K, respec‑
tively), 𝑔𝑑𝑖𝐵 for 𝑎𝑏𝑏 data depends on another unrelated
parameter (2𝜏/𝜃𝐵). All possible scenarios are thus pos‑
sible concerning 𝑔𝑑𝑖𝐴 versus 𝑔𝑑𝑖𝐵. For example, 𝑎𝑎𝑏 data
may recognize 𝐴 as a distinct species from 𝐵, while 𝑎𝑏𝑏
data may recognize 𝐵 as of the same as 𝐴, or vice versa.

Case (d) Gene flow between non‑sister lineages and para‑
phyletic species.—Finally, we considered the species tree
and MSC‑M model of Figure 4a, in which populations
𝐴, 𝐵, 𝐶, and 𝐷 represent 1 paraphyletic species with
different geographical populations with excessive gene
flow between them, while population 𝑋 is a distinct
species that split off from population 𝐴 time 𝜏𝑋𝐴 ago
and has since been in complete isolation from popula‑
tion 𝐴 or species 𝐴𝐵𝐶𝐷. We conducted 2 analyses under
the model. The first was an assessment of the 𝑔𝑑𝑖 cal‑
culated for non‑sister populations (such as 𝐴 and 𝐵 in
Fig. 4a). The second was a re‑analysis of the multilocus
sequence data simulated under the model of Figure 4a,

to explore the idea of merging non‑sister lineages under
the MSC‑M model in the hierarchical merge algorithm
to delimit paraphyletic species.

First, we explored the behavior of the 𝑔𝑑𝑖 for
non‑sister populations. We simulated gene trees to
calculate 𝑔𝑑𝑖 for population pairs 𝑋–𝐴, 𝐴–𝐵, 𝐵–𝐶,
and 𝐶–𝐷 at different migration rates, with 𝑀 =
0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1, 1.5, and 2. Other
parameters are given in Figure 4a. For each 𝑀 and
each population pair, we simulated gene trees for 3 se‑
quences (in either the 𝑎𝑎𝑏 or 𝑎𝑏𝑏 configuration) to calcu‑
late 𝑔𝑑𝑖J and 𝑔𝑑𝑖K. For instance, for populations 𝐴 and 𝐵
and the 𝑎𝑎𝑏 configuration, we simulated 106 gene trees
for 3 sequences (𝑎1, 𝑎2, 𝑏) under the MSC‑M model for 5
populations of Figure 4a and calculated the proportions
of gene tree 𝐺1 as well as 𝐺1𝑎, that is, 𝐺1 = ((𝑎1, 𝑎2), 𝑏)
with the node age 𝑡𝑎𝑎 < 𝜏𝑋𝐴𝐵.

The results are shown in Figure 12. If there is lit‑
tle gene flow, with 𝑀 = 𝑁𝑚 ≤ 0.05, all 5 pop‑
ulations (𝑋, 𝐴, 𝐵, 𝐶, 𝐷) are considered distinct species
using both indexes 𝑔𝑑𝑖J and 𝑔𝑑𝑖K, and using both
𝑎𝑎𝑏 or 𝑎𝑏𝑏 data. However, at moderate levels of gene
flow, the results depend on the index and the data
configuration.

Concerning the species status of 𝑋 and 𝐴, the 2 in‑
dexes 𝑔𝑑𝑖J and 𝑔𝑑𝑖K are very similar, but there are sub‑
stantial differences depending on whether one calcu‑
lates 𝑔𝑑𝑖 using 𝑥𝑥𝑎 or 𝑥𝑎𝑎 data. When one uses 𝑥𝑥𝑎, 𝑔𝑑𝑖 >
0.7 (Fig. 12a,c, 𝑋–𝐴 pair), and population 𝑋 is judged
to be a distinct species from 𝐴. However, with 𝑥𝑎𝑎 data,
𝑔𝑑𝑖 < 0.7 when 𝑀 > 0.1 (Fig. 12b,d, 𝑋–𝐴 pair), and pop‑
ulation 𝐴 may not be considered a distinct species from
𝑋. The difference may be due to the fact that because of
gene flow from population 𝐵, population 𝐴 has a much
larger effective population size than 𝑋.

Concerning the species status of populations 𝐴, 𝐵, 𝐶,
and 𝐷, the data configuration (𝑎𝑎𝑏 vs. 𝑎𝑏𝑏) made lit‑
tle difference, but the 2 indexes 𝑔𝑑𝑖J and 𝑔𝑑𝑖K behaved
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FIGURE 11. [Case c, 𝑎𝑎𝑏 data] a) 𝑔𝑑𝑖J and b) 𝑔𝑑𝑖K for sequences 𝑎1, 𝑎2, 𝑏 under the MSC‑M model of Figure 10a with gene flow from a ghost
species, plotted against 𝑀 = 𝑀𝐶𝐴 and 2𝜏/𝜃, with 𝜃𝐴 = 𝜃𝐶 = 𝜃, and Δ𝜏 = 0.1𝜃𝐶 = 5𝜃𝐴𝐵. In a), 𝑔𝑑𝑖J < 0 in the white region outside the black
contour line. We used the parameter values of Figure 10 in the calculation, but note that 𝑔𝑑𝑖J depends on only 5 parameters and 𝑔𝑑𝑖K depends
on 3.
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FIGURE 12. 𝑔𝑑𝑖J and 𝑔𝑑𝑖K for population pairs under the isolation‑by‑distance model of Figure 4a, plotted against the migration rate
(𝑀 = 𝑁𝑚), estimated by simulating 106 gene trees for 3 sequences. Parameters are fixed at the values in Figure 4a: 𝜏𝑋𝐴𝐵𝐶𝐷 = 0.04,
𝜏𝑋𝐴𝐵𝐶 = 0.03, 𝜏𝑋𝐴𝐵 = 0.02, and 𝜏𝑋𝐴 = 0.01, with 𝜃 = 0.01 for all populations. Three sequences, in either the 𝑎𝑎𝑏 or 𝑎𝑏𝑏 configura‑
tion, are sampled per locus per population pair; in the case of populations 𝐴 and 𝐵, they are either 𝑎1, 𝑎2, 𝑏, in which case the gene tree 𝐺1 has
the topology ((𝑎1, 𝑎2), 𝑏); or 𝑎, 𝑏1, 𝑏2, in which case 𝐺1 is (𝑎, (𝑏1, 𝑏2)).

differently. When 𝑀 > 0.5, 𝑔𝑑𝑖J assigned populations
𝐴, 𝐵, 𝐶, and 𝐷 to the same species (𝑔𝑑𝑖J < 0.2, Fig. 12a,b),
while 𝑔𝑑𝑖K is indecisive (0.2 < 𝑔𝑑𝑖K < 0.7, Fig. 12c,d).
This appeared to be the same pattern as in the symmet‑
rical migration model of case (a) (Fig. 6).

Second, we analyzed the XABCD dataset simulated
under the MSC‑M model of Figure 4a. Earlier these data
were analyzed under the MSC model with no gene flow,
using the guide tree of Figure 4b, which had a different
topology from the true species tree of Figure 4a. With
no gene flow in the model, 𝑔𝑑𝑖J and 𝑔𝑑𝑖K are equivalent,

and both inferred either 1 species (𝑋𝐴𝐵𝐶𝐷) at the cutoff
of 𝑔𝑑𝑖 = 0.7 or 2 species (𝑋 and 𝐴𝐵𝐶𝐷) at the cutoff of
𝑔𝑑𝑖 = 0.2.

Here, we re‑analyzed the same data under the MSC‑
M model, allowing the merge of non‑sister populations
as a strategy for delimiting paraphyletic species. We ig‑
nored the problem of inferring the MSC‑M model with
gene flow from genomic data (see Flouri et al. 2023
for discussions), and used the true MSC‑M model of
Figure 4a as the guide tree (or starting delimitation). In
each iteration, we allow the merging of multiple pairs
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of sister lineages. If no sister pair can be merged, we
consider non‑sister pairs and allow the merge of only
1 non‑sister pair (corresponding to the smallest 𝑔𝑑𝑖). Af‑
ter each merge, migration events between the merged
populations are removed. Two cutoffs, 0.2 and 0.7, are
used in the algorithm. This procedure is not yet au‑
tomated in the HHSD pipeline, and instead we imple‑
mented it manually (Supplementary Table S3). 𝑔𝑑𝑖J sup‑
ported 2 species (𝑋 and 𝐴𝐵𝐶𝐷) at the cutoff 𝑔𝑑𝑖 <
0.2 or 1 species at the cutoff 𝑔𝑑𝑖 < 0.7. In contrast,
𝑔𝑑𝑖K identified 5 species at the cutoff 𝑔𝑑𝑖 < 0.2 or
1 species (𝑋𝐴𝐵𝐶𝐷) at the cutoff 𝑔𝑑𝑖 < 0.7. The re‑
sults agreed well with the theoretical calculations of
Figure 12.

RESULTS FROM EMPIRICAL DATASETS
We analyzed 3 empirical datasets using the HHSD

pipeline. In each case, the specific taxonomic group
and associated delimitation problem will be introduced
along with existing results.

Species Delimitation of Giraffes (Genus Giraffa)
The taxonomic position and classification of giraffes

(genus Giraffa) have been controversial for many years
(Mitchell 2009). Previous studies using morphological
characters and molecular data produced inconsistent re‑
sults, delimiting from 1 to 6 species in the Giraffa genus.
Currently, 9 geographical populations are recognized as
subspecies: camelopardalis, angolensis, antiquorum, giraffa,
peralta, reticulata, rothschildi, thornicrofti, and tippelskirchi.
Most recently, Petzold and Hassanin (2020) compiled
a multilocus dataset of 21 introns (average sequence
length 808 bp), sampled from 66 individuals from the 9
subspecies, and conducted a number of population ge‑
netic and phylogenetic analyses. The authors suggested
a delimitation with 3 species, although they noted that
Bayesian model selection by BPP supported as many as
5 species.

We re‑analyzed these data using our pipeline, us‑
ing the 5‑species phylogeny (Fig. 13b) as the guide
tree, which was inferred using BPP by Petzold and Has‑
sanin (2020). Based on phylogenetic analysis of mito‑
chondrial haplotypes and identified hybrids (Fennessy
et al. 2016; Petzold and Hassanin 2020), bidirectional
migration was specified between reticulata and the tip‑
pelskirchi+thornicrofti lineage, and between reticulata and
the camelopardalis+rothschildi+antiquorum lineage. Migra‑
tion rates were assigned the gamma prior G(0.1, 10)
with a mean of 0.1/10 = 0.01 migrant individuals per
generation. Merge and split analyses were conducted
with the animal‑specific 𝑔𝑑𝑖 thresholds of 0.3 and 0.7,
as recommended by Jackson et al. (2017) (see Supple‑
mentary Fig. S3 for the control file). Each iteration of
the algorithms took ∼2h using 8 threads on a server
with Intel Xeon Gold 6154 CPU, with a total runtime of
approximately 8 h.

FIGURE 13. a) Geographical distributions of 5 putative species
within Giraffa. The bright region on the map (modified from
https://giraffeconservation.org/giraffe‑species/) shows historical
(ca. 1700) giraffe ranges. b) The guide tree for 5 populations of
giraffes, with gray arrows indicating bidirectional migration events
(Petzold and Hassanin 2020, Fig. 1). c) The merge algorithm supports
5 species, while d) the split algorithm supports 3.

The merge algorithm suggested 5 species, while the
split algorithm suggested 3 (Fig. 13c,d). Both methods
recognized the Eastern (tippelskirchi and thornicrofti)
and Southern (giraffa and angolensis) populations in
the guide tree as distinct species. The split algorithm
lumped the 3 Northern populations into 1 species,
while the merge algorithm recognized them as 3 distinct
species.

https://doi.org/10.5061/dryad.jm63xsjhc
https://doi.org/10.5061/dryad.jm63xsjhc
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TABLE 1 Estimates (posterior means and 95% HPD CIs) of migra‑
tion rates (𝑀) between the 5 putative giraffe species in the guide tree
of Figure 13b.

Donor Recipient 𝑀 (95% HPD CI)

TipTho reticulata 0.002 (0.000, 0.015)
reticulata TipTho 0.002 (0.000, 0.009)
reticulata CamRotAnt 0.027 (0.000, 0.129)
CamRotAnt reticulata 0.123 (0.000, 0.328)

Estimates of migration rates during the merge algo‑
rithm supported the hypothesized patterns of gene flow
between reticulated giraffes and the neighbouring pop‑
ulations (Table 1). The highest migration rate was be‑
tween the Northern populations from cam.+rot.+ant. to
reticulata.

Species Delimitation in Milksnakes (Lampropeltis
triangulum)

The American milksnake Lampropeltis triangulum is
a New World snake with one of the widest known
geographic distributions within the squamates. Seven
subspecies are known: abnorma, polyzona, micropholis,
triangulum, gentilis, annulata, and elapsoides (Fig. 14a).
Ruane et al. (2014) analyzed 11 nuclear loci (aver‑
age length 537 bp) for 164 individuals from the 7
subspecies using BPP model comparison and found
evidence for 7 distinct species. Chambers and Hillis
(2020) re‑analyzed these data and suggested that several
species hypothesized by Ruane et al. (2014) may rep‑
resent arbitrary slices of continuous geographic clines.
They instead suggested 2 delimitation hypotheses, with
3 and 1 species, respectively, as shown in Figure 14c, d.

We re‑analyzed the data of Ruane et al. (2014) us‑
ing our pipeline, using the guide tree for 7 populations
of Chambers and Hillis (2020) (Fig. 14b). As the orig‑
inal analysis Ruane et al. (2014) found ongoing gene
flow between geographically adjacent populations, we
added bidirectional migration events in the guide tree
(Fig. 14b). Merge and split algorithms were run using
𝑔𝑑𝑖 thresholds of 0.3 and 0.7 (see Supplmentary Fig. S4
for the control file). Each iteration of the algorithm took
∼ 2.5 h using 8 threads on a server, with a total runtime
of ∼ 12.5 h.

The merge algorithm suggested 3 species, group‑
ing the subspecies abnorma, polyzona, and micropho‑
lis into 1 species, and triangulum, gentilis, and annu‑
lata into another species (Fig. 14c). This is the same
delimitation as the 3‑species hypothesis of Chambers
and Hillis (2020). The split analysis supported only 1
species (Fig. 14d). Migration rates between the adja‑
cent subspecies/populations during the merge analysis
suggested ongoing genetic exchange between some of
the subspecies pairs, in particular, between L. annulata
and L. gentilis, and between L. abnorma and L. polyzona
(Table 2).

FIGURE 14. a) Geographic distribution of 7 milksnake subspecies
(map based on and modified from Ruane et al. 2014, Fig. 1d). b) The
guide tree with bidirectional migration events indicated by gray ar‑
rows. c and d) Inferred delimitation hypotheses by the merge and split
algorithms. e) Alternative delimitation hypotheses tested by Cham‑
bers and Hillis (2020), each of which splits the gentilis and triangulum
samples at an arbitrary West‑East divide line. The HHSD merge al‑
gorithm grouped the 2 populations in each hypothesis into a single
species.

https://doi.org/10.5061/dryad.jm63xsjhc
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TABLE 2 Estimates of migration rates (𝑀) between 7 milksnake
populations during the merge algorithm (Figure 14).

It. Donor Recipient 𝑀 (95% HPD CI)

1 elapsoides gentilis 0.003 (0.000, 0.019)
gentilis elapsoides 0.010 (0.000, 0.055)
elapsoides triangulum 0.009 (0.000, 0.052)
triangulum elapsoides 0.055 (0.000, 0.152)
annulata polyzona 0.002 (0.000, 0.012)
polyzona annulata 0.003 (0.000, 0.016)
annulata gentilis 0.162 (0.000, 0.331)
gentilis annulata 0.053 (0.000, 0.220)
polyzona abnorma 0.044 (0.000, 0.189)
abnorma polyzona 0.127 (0.000, 0.293)
gentilis triangulum 0.011 (0.000, 0.070)
triangulum gentilis 0.050 (0.000, 0.267)

2 elapsoides GenTri 0.008 (0.000, 0.049)
GenTri elapsoides 0.067 (0.000, 0.142)
annulata PolAbn 0.002 (0.000, 0.010)
PolAbn annulata 0.003 (0.000, 0.020)
annulata GenTri 0.081 (0.000, 0.276)
GenTri annulata 0.073 (0.000, 0.181)

3 elapsoides AnnGenTri 0.016 (0.000, 0.085)
AnnGenTri elapsoides 0.102 (0.028, 0.184)
MicPolAbn AnnGenTri 0.006 (0.000, 0.034)
AnnGenTri MicPolAbn 0.080 (0.028, 0.135)

Chambers and Hillis (2020) also applied an arbitrary
West‑East divide to split the gentilis and triangulum pop‑
ulations into 2 species, generating 5 arbitrary delimita‑
tion hypotheses (each with 2 species) (Fig. 14e). They
found that all 5 delimitation hypotheses were supported
by Bayesian model selection using BPP, even though they
are arbitrary. We used our pipeline to re‑analyze the
data, using the merge algorithm with the same settings
as above. The data consisted of only the 38 individu‑
als from gentilis, triangulum, and annulata populations.
The same guide tree for the 3 populations was used,
but each hypothesis was represented by constructing
an Imap file to map the individual samples to the 3
populations (see Supplementary Figs. S5 and S6 for the
control file and command‑line scripts). Bidirectional mi‑
gration between gentilis and triangulum was allowed in
the guide tree. Each iteration of the algorithm took ∼
1.5 h on a server using 8 threads, with a total runtime
of ∼ 15 h.

Under each of the 5 delimitation hypotheses, the HHSD
merge algorithm grouped the 2 subspecies gentilis and
triangulum into a single species.

Introgression and Species Delimitation in the Longear
Sunfish (Lepomis megalotis)

The longear sunfish (Lepomis megalotis) is a freshwa‑
ter fish in the sunfish family, Centrarchidae, of the or‑
der Perciformes. It is native to eastern North Amer‑
ica from the Great Lakes down to northeastern Mex‑
ico (Fig. 15a). Six subspecies are recognized: aquilensis,
solis, ouachita, megalotis, ozark, and pelastes. Due to the
widespread geographic distribution and frequent hy‑
bridization, species delimitation in the longear sunfish

FIGURE 15. a) Geographic distribution of longear sunfish (Lepomis
megalotis) (map based on http://www.roughfish.com/content/longear‑
sunfish). b) The guide tree, with 3 migration events (from L. megalotis
to L. pelastes, L. solis, and L. ozark) indicated by gray arrows. c) Both
merge and split algorithms support a single species.

poses considerable challenges. Kim et al. (2022) ana‑
lyzed a dataset of 163 ddRAD loci (average sequence
length 89 bp) sampled from 50 individuals from the
6 subspecies. After inferring a species/population phy‑
logeny using IQ‑TREE, they analyzed the data under the
MSC model with no gene flow using BPP to calculate 𝑔𝑑𝑖
scores to delimit species in the group. They found that
none of the population pairs had high 𝑔𝑑𝑖 values to sup‑
port distinct species status. Kim et al. (2022) also found
evidence for multiple instances of historical or ongoing
gene flow.

We re‑analyzed the data of Kim et al. (2022), using the
MSC‑M model to calculate 𝑔𝑑𝑖, accommodating migra‑
tion between the subspecies. Based on the hybridization
patterns observed by Kim et al. (2022), migration from
megalotis to pelastes, solis, and ozark was specified in the
guide tree (Fig. 15b). Migration rates were assigned the
gamma prior G(0.1, 10) with a mean of 0.01. Merge and
split algorithms were run using 𝑔𝑑𝑖 thresholds of 0.3 and
0.7 (control file in Supplementary Fig. S7). Each iteration
of the algorithm took ∼ 20 h using 16 threads, with a
total runtime of ∼ 120 h.

https://doi.org/10.5061/dryad.jm63xsjhc
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TABLE 3 Estimates of migration rates between 5 sunfish popula‑
tions during the merge algorithm (Figure 15).

It. Donor Recipient 𝑀 (95% HPD CI)

1 megalotis solis 0.605 (0.412, 0.808)
megalotis pelastes 0.537 (0.370, 0.709)
megalotis ozark 0.322 (0.103, 0.596)

2 megalotis solis 0.692 (0.462, 0.945)
megalotis PelOzk 0.693 (0.397, 0.989)

3 PelOzkMeg Solis 0.579 (0.387, 0.785)

4 PelOzkMegOua Solis 0.407 (0.279, 0.541)

Both merge and split analyses supported a single
species. This is congruent with the delimitation of Kim
et al. (2022), in which 𝑔𝑑𝑖 was calculated under the
MSC model without gene flow. Estimates of the mi‑
gration rates between the subspecies during the merge
algorithm (Table 3) were consistently large, support‑
ing the classification of those populations as a single
species.

DISCUSSION

Heuristic Species Delimitation with Gene Flow and
Paraphyletic and Polytypic Species

In this paper, we have developed a python pipeline
to automate hierarchical merge and split algorithms for
heuristic species delimitation. The merge algorithm was
described and applied by Leaché et al. (2019), and here
we have made the procedure automatic. We have also
implemented the hierarchical split algorithm. Our tests
using both simulated and empirical datasets suggest
that the heuristic algorithms based on 𝑔𝑑𝑖 may be less
prone to over‑splitting, which has been discussed ex‑
tensively as a problem with the approach of Bayesian
model selection implemented in BPP (Yang and Rannala
2010).

Heuristic species delimitation discussed here may be
considered refinements of earlier heuristics including
genetic‑distance cutoffs (such as the “10× rule” in DNA
barcoding, Hebert et al. 2004) and reciprocal mono‑
phyly of gene trees (Baum and Shaw 1995). For ex‑
ample, under the complete‑isolation model (MSC with
no gene flow), 𝑔𝑑𝑖 (Equation (2)) is a simple function
of 𝜏/(𝜃/2) = 𝑇/(2𝑁), which contrasts within‑species
polymorphism with between‑species divergence, just as
does the “10x rule” — note that 2𝑁 is the average diver‑
gence time (in generations) between 2 sequences sam‑
pled from within the same species (of size 𝑁) while 𝑇
is the species split time (in generations). Similarly gene
tree 𝐺1 = ((𝑎1, 𝑎2), 𝑏) is one of within‑species mono‑
phyly given the 3 sequences at the locus (𝑎1, 𝑎2, 𝑏). Ear‑
lier criteria make use of simple summaries of the genetic
data, whereas the methods discussed here are based on
population parameters. Distinguishing data summaries
from population parameters and adopting a statistical

inference framework makes it easy to address properly
concerns such as gene‑tree reconstruction errors due to
lack of phylogenetic information, stochastic fluctuations
of the coalescent process across the genome, etc. Note
that reliable estimation of the species tree and popu‑
lation parameters is possible from analysis of genomic
data even if every locus contains very weak phyloge‑
netic information (Xu and Yang 2016). Indeed simu‑
lation studies suggest that genomic data provide rich
information concerning population histories, and the
MSC framework is powerful to produce precise and ac‑
curate estimation of population parameters (e.g., Huang
et al. 2020; Thawornwattana et al. 2022; Ji et al. 2023).
As 𝑔𝑑𝑖 is defined as a function of parameters, by defi‑
nition 𝑔𝑑𝑖 will be well estimated from genomic data as
well.

Our pipeline requires the user to supply a guide tree.
This may be inferred using BPP under the MSC model
with no gene flow (Yang and Rannala 2014; Rannala
and Yang 2017). Other programs implementing the MSC
may be used as well, such as *BEAST (Douglas et al.
2022) and IMA (Hey et al. 2018). Phylogenetic programs
such as IQ‑TREE (Minh et al. 2020) and RAXML (Sta‑
matakis et al. 2012) may also be used to infer the max‑
imum likelihood tree using concatenated genomic data
or mitochondrial genomic sequences.

We note that the hierarchical merge and split algo‑
rithms implicitly assume a monophyletic species defi‑
nition and thus do not work when a species is para‑
phyletic. Paraphyletic species, or species comprising of
multiple populations that are not monophyletic, appear
to be common (Crisp and Chandler 1996). Note that one
may insist on higher taxa being always monophyletic
while allowing for paraphyletic species (Crisp and
Chandler 1996). The model tree of Figure 4a represents
such a scenario, in which species 𝐴𝐵𝐶𝐷 is paraphyletic.
The issue here concerns the non‑monophyly of the
populations of the same species, and is different from
the monophyly of a gene tree, which is problematic if
used as a criterion for species delimitation (Knowles and
Carstens 2007). Non‑monophyly of gene trees is a nat‑
ural consequence of the coalescent process under the
MSC model and can arise even if the populations of each
species are monophyletic.

If all populations are completely isolated with no gene
flow, the concept of a paraphyletic species does not ap‑
pear to be sensible. For example, if the population phy‑
logeny is the model of Figure 4a but without gene flow,
that is, ((((𝑋, 𝐴), 𝐵), 𝐶), 𝐷), it does not appear sensible
to designate population 𝑋 as a distinct species while
lumping populations 𝐴, 𝐵, 𝐶, and 𝐷 into 1 species, given
that populations 𝐵, 𝐶, and 𝐷 split from 𝐴 earlier than 𝑋
did. However, with gene flow between populations, the
population divergence history may render the species
to be paraphyletic (as in the model of Figure 4a with
gene flow). In this study, we have explored 2 approaches
to delimiting paraphyletic species or to accommodating
gene flow during heuristic species delimitation.
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The first is to use a guide tree for all populations (in‑
cluding those that make up the paraphyletic species) as‑
suming no gene flow. This is used in Leaché et al. (2019,
Fig. 3b) and in this paper, where the guide tree is con‑
structed under the MSC model ignoring gene flow and
then used to calculate the 𝑔𝑑𝑖 (Fig. 4b,c). The resulting
guide tree may reflect gene flow as well as population
divergence (Fig. 4b,c) and may differ from the popula‑
tion phylogeny. For the simulated dataset of Figure 4,
this led to delimitations of either 1 species at the cutoff
of 0.7 or 2 species (𝐴𝐵𝐶𝐷 and 𝑋) at the 𝑔𝑑𝑖 = 0.2 cutoff
(see also Supplementary Table S2). The results appeared
sensible even though the guide tree used did not have
the correct topology.

The second approach is to use the MSC‑M model
accommodating gene flow in the guide tree (e.g., the
MSC‑M model of Fig. 4a), but allow the merge of non‑
sister lineages involved in gene flow in the merge al‑
gorithm (e.g., 𝐴 and 𝐵; Fig. 4a). When 2 non‑sister
populations are merged, one may use the idea of dis‑
played species trees (Degnan 2018) to generate the new
species tree or model. For example, if populations 𝐵
and 𝐷 are merged because of high migration rate
𝑀𝐵𝐷, we may merge 𝐷 into 𝐵 so that the species
tree becomes (((𝑋, 𝐴), (𝐵, 𝐷)), 𝐶), whereas if 𝑀𝐷𝐵 is
high, we may merge 𝐵 into 𝐷 to give the species tree
(((𝑋, 𝐴), 𝐶), (𝐵, 𝐷)). This approach is not yet imple‑
mented in HHSD, but we applied it manually to the sim‑
ulated data of Figure 4a in Supplementary Table S3, and
the results appeared sensible.

Even within the framework of Bayesian model selec‑
tion, multiple approaches may be possible when there
is gene flow between populations. Given populations
𝐴 and 𝐵, 3 models may be considered: (i) 𝐻1: 1 single
species, (ii) 𝐻2: 2 species with no gene flow, and (iii)
𝐻2𝑚: 2 species with gene flow (with either 𝑀𝐴𝐵 > 0
or 𝑀𝐵𝐴 > 0 or both). Leaché et al. (2019) compared 𝐻1
and 𝐻2 to decide whether there is 1 or 2 species, and
noted that if a population split is followed by gene flow
so that 𝐻2𝑚 is the true model, then 𝐻2 is less wrong
than 𝐻1 and will win over 𝐻1, potentially leading to
over‑splitting. Alternatively one may insist on species
status only if there is no significant evidence for gene
flow, that is, only if 𝐻2 wins over both 𝐻1 and 𝐻2𝑚).
This may arguably be a more faithful implementation of
the biological species concept (Dobzhansky 1937; Mayr
1942; Coyne and Orr 2004) than the comparison between
𝐻1 and 𝐻2 (Yang and Rannala 2010). However, this ap‑
proach may lead to over‑lumping since some “good”
species are known to exchange migrants.

Challenges and Utility of Heuristic Species Delimitation
The greatest challenge to heuristic species delimita‑

tion, when applied to determine the species status of
allopatric geographical populations, may be the arbi‑
trary nature of species concept (e.g., de Queiroz 2007;
Mallet et al. 2023; Maddison and Whitton 2023). Even if
a full characterization of the history of the populations

is available, in terms of the order and timings of pop‑
ulation splits, population sizes, and the directions, tim‑
ings and strengths of gene flow between populations, a
universally accepted view on species status may not ex‑
ist. Darwin considered the difference between a species
and a variety (subspecies, race, or population) to be one
of degree, while Bateson (1909) considered species to
have a “strict and concrete meaning in contradistinction
to the term Variety” and suggested hybrid sterility as
a test of species status. The biological species concept
(Dobzhansky 1937; Mayr 1942; Coyne and Orr 2004)
emphasizes reproductive isolation as the major crite‑
rion for species status. Thus, heuristic species delimita‑
tion discussed here is more in keeping with Darwin’s
view that species are continuous, with fuzzy boundaries
between species and “varieties” (subspecies, races, or
populations). Allopatric populations that do not over‑
lap in their geographical distributions, with no or little
gene flow between them, may be classified as distinct
species, or subspecies of a polytypic species, and some
arbitrariness appears unavoidable.

The large interval of uncertainty for 𝑔𝑑𝑖: 0.2 < 𝑔𝑑𝑖 <
0.7 (Jackson et al. 2017) should be considered a con‑
sequence of the arbitrariness of the heuristic delimita‑
tion. This is also the main cause for different species
delimitations in analysis of the same data using the
same guide tree by the merge and split algorithms, as
in our analyses of the giraffe and milksnake datasets
(Figs. 13c,d and 14c,d). The cutoffs of Jackson et al.
(2017) were based on estimates of population parame‑
ters in 178 empirical studies compiled by Pinho and Hey
(2010, Supplementary Table S1). The datasets analyzed
in those studies were small, mostly with only a few loci
for 2 populations, and the summaries were medians of
estimates in major taxonomic groups. It may be prof‑
itable to redo the meta‑analysis, using more recent ge‑
nomic sequence data and improved analytical methods
to generate empirical estimates of population parame‑
ters in well‑studied systems where the species status of
the populations is well established. Such an effort may
be hoped to lead to refined criteria and cutoffs (with
reduced interval of uncertainty).

In our hierarchical algorithms, it should be straight‑
forward to use empirical criteria other than the 𝑔𝑑𝑖. It is
also possible to apply a composite criterion; for instance,
besides the 𝑔𝑑𝑖 cutoff, we may require a minimum
species split time (in generations or in years) (Rannala
and Yang 2020). When there exist contact zones between
populations, one may estimate the proportion of hy‑
brids (ℎ) (Anderson and Thompson 2002; Chakraborty
and Rannala 2023), and contrast it with the historical
migration rate (𝑚) estimated from genomic data (Beerli
2006; Hey 2010; Hey et al. 2018; Gronau et al. 2011; Flouri
et al. 2023). The rate ratio 𝑚/ℎ may be used to measure
reproductive isolation: a value of 1 means that intro‑
gressed alleles are neutral and have the same chance of
being retained as a native allele in the recipient popula‑
tion, while 𝑚/ℎ ≪ 1 means that introgressed alleles are
strongly deleterious and purged from the population
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by natural selection, indicating the existence of (post‑
zygotic) reproductive isolation (Westram et al. 2022). A
composite criterion incorporating 𝑚/ℎ may be informa‑
tive about species status, although a strict adherence to
reproductive isolation (i.e., 𝑚/ℎ = 0) as the criterion for
delimiting species may be untenable given the prevalent
nature of gene flow between well‑recognized species.

While acknowledging the caveats of empirical species
delimitation, we suggest that our pipeline allows one to
utilize the power of the MSC framework and the BPP
program to estimate population parameters precisely
and accurately using the ever‑increasing genomic se‑
quence data. In particular, the recent implementation
of the MSC‑M model in BPP, having been applied to
genome‑scale datasets with thousands of loci (Flouri
et al. 2023; Thawornwattana et al. 2022, 2023), has
greatly improved the biological realism of models that
are available for analyzing genomic data from closely
related species and populations, the species status of
which is yet to be determined. We hope that our pipeline
may become a useful tool for evolutionary biologists
to assess the genetic evidence for species delimitation,
which should be integrated with other lines of evidence,
including morphological and behaviorial characteris‑
tics, and patterns of hybridization (Fujita et al. 2012;
Solis‑Lemus et al. 2015; Kim et al. 2022).
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