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Abstract
Aim: The study of biogeographic barriers is instrumental in understanding the evolu-
tion and distribution of taxa. With the increasing availability of empirical datasets, 
emergent patterns can be inferred from communities by synthesizing how barriers 
filter and structure populations across species. We assemble phylogeographic data 
across a barrier and perform spatially explicit simulations, quantifying spatiotemporal 
patterns of divergence, the influence of traits on these patterns, and the statistical 
power needed to differentiate diversification modes.
Taxon: Vertebrates, Invertebrates, Plants
Location: North America
Methods: We incorporate published datasets, from papers that match relevant key-
words, to examine taxa around the Cochise Filter Barrier, separating the Sonoran and 
Chihuahuan Deserts of North America, to synthesize phylogeographic structuring 
across the communities with respect to organismal functional traits. We then use sim-
ulation and machine learning to assess the power of phylogeographic model selection.
Results: Taxa distributed across the Cochise Filter Barrier show heterogeneous re-
sponses to the barrier in levels of gene flow, phylogeographic structure, divergence 
timing, barrier width, and divergence mechanism. These responses correlate with 
locomotor and thermoregulatory traits. Many taxa show a Pleistocene population 
genetic break, often with introgression after divergence. Allopatric isolation and iso-
lation by environment are the primary mechanisms structuring genetic divergence 
within taxa. Simulations reveal that in spatially explicit isolation with migration models 
across the barrier, age of divergence, presence of gene flow, and presence of isola-
tion by distance can confound the interpretation of evolutionary history and model 
selection by producing easily confusable results. We re- analyze five empirical genetic 
datasets to illustrate the utility of these simulations despite these constraints.
Main Conclusions: By synthesizing phylogeographic data for the Cochise Filter Barrier, 
we show that barriers interact with species traits to differentiate taxa in communities 
over millions of years. Identifying diversification modes across the barrier for these 
taxa remains challenging because commonly invoked demographic models may not be 
identifiable across a range of likely parameter space.
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1  |  INTRODUC TION

Biogeographic barriers, which separate taxa and restrict gene 
flow via unsuitable habitat or impeded dispersal, have shaped the 
fields of evolutionary biology and ecology (e.g., Simpson, 1940; 
Lomolino et al., 2004). The study of barriers has led to develop-
ment of theory in species concepts (e.g., Mayr, 1942; de Queiroz, 
2005), island biogeography (e.g., Janzen, 1967; MacArthur & 
Wilson, 1967), hybridization (e.g., Hoskin et al., 2005), and tax-
onomy (e.g., Helbig et al., 2002). The unifying factor across these 
topics is that the barrier itself is directly or indirectly linked to the 
process that generated the pattern of interest. For example, in 
island biogeography, the oceanic barriers are the primary cause 
of island dynamics, whereas in hybridization, the existence of a 
biogeographic barrier is often implied in separating taxa before 
secondary contact. Understanding the mechanisms that produce 
these patterns has been a major focus in historical biogeography, 
and efforts to understand these mechanisms have expanded with 
the increasing number and complexity of phylogeographic studies 
(see Garrick et al., 2015).

Phylogeography has the dual aim of characterizing how ge-
netic diversity is distributed across the landscape and proposing 
the temporal framework for when this diversity formed (Avise 
et al., 1987). In addition, phylogeographic approaches aim to infer 
the processes that have promoted genetic diversity across the 
landscape (Avise et al., 2016). Early studies provided insight into 
the distribution of genetic variation within species and between 
species complexes that often coincided with geographic features 
or environmental gradients (e.g., Kozak et al., 2006; Taberlet & 
Bouvet, 1994). The extension of phylogeographic approaches 
with advances of molecular dating yielded insight into the timing 
of divergence between populations (e.g., Arbogast et al., 2002; 
Fouquet et al., 2010; Matos et al., 2016). Further advancements in 
DNA sequencing technology and statistical modeling allowed re-
searchers to better identify the patterns and processes associated 
with biogeographic barriers (Hickerson et al., 2010). However, the 
study of species diversification across barriers has been hampered 
by conceptual and logistical challenges. One such challenge is that 
although many taxa might show phylogeographic structure that is 
concordant with a barrier, this does not indicate that the barrier 
itself caused genetic differentiation. For example, processes such 
as speciation over environmental gradients (Nosil, 2008; but see 
Bierne et al., 2013), behavioral selection (Zhang et al., 2012) or 
abundance troughs (Barton & Hewitt, 1981; Barrowclough et al., 
2005) could all produce similar patterns. Alternatively, previous 
barriers and changes in habitat could be the mechanisms of struc-
ture, rather than what appears to be the barrier in the present (e.g., 
river capture; Tagliacollo et al., 2015).

A second challenge is that a barrier may cause differentia-
tion in some taxa, but it may not affect the entire biota at once; 
this is known as a barrier being semi- permeable or having filters 
(Simpson, 1940). Filters are hypothesized to be mediated by organ-
ismal traits such as morphology (Dick et al., 2008; Hanson et al., 

2012), reproductive isolation (Christe et al., 2016; Provost et al., 
2018), physiology and niche (Castoe et al., 2007; Edwards et al., 
2018), or population demographics and drift (Carnicer et al., 2012). 
The mechanisms potentially underlying filter barriers are numer-
ous, possibly barrier and taxon specific, and likely not mutually ex-
clusive. Identifying which traits are important for causing isolation 
requires knowing which taxa are and are not separated at a barrier, 
where the barrier is relative to phylogeographic breaks between 
populations, and what functional traits are correlated with differ-
entiation across the filter. To illuminate the role of filter barriers in 
diversification, and the mechanisms causing it, an understanding 
of the processes of differentiation and variation in the context of 
communities is required.

Advances in demographic modeling have enabled phylogeog-
raphers to distinguish between alternative modes of population 
differentiation (e.g., Gutenkunst et al., 2009; Gravel, 2012). Many 
of these approaches must manage computation expense while 
maximizing the information used (e.g., full likelihood or Bayesian 
methods) or alternately running quickly using approximate meth-
ods but requiring large amounts of summary statistics that may 
not use all of the data collected (e.g., ABC or approximate likeli-
hood; Hickerson et al., 2006; Jackson et al., 2017). New approaches 
allow testing demographic models on multiple taxa simultaneously 
(Satler & Carstens, 2017; Xue & Hickerson, 2017) and incorporat-
ing species abundances (Overcast et al., 2019). A common outcome 
of demographic analyses is overwhelming support for isolation 
with migration models (Nosil, 2008; Carstens et al., 2017; but 
see Cruickshank & Hahn, 2014), which has two important impli-
cations. First, support for isolation with migration over pure allo-
patry challenges the view that differentiation is a discrete event. 
Second, filtering dynamics of barriers are likely more complex than 
recognized if gene flow continues to occur across them after isola-
tion. Although detecting the timing and magnitude of gene flow is 
critical to understand barrier dynamics, using demographic model 
selection to do this can be difficult as models can often be indis-
tinguishable (Roux et al., 2016). Furthermore, most models assume 
that populations are panmictic, despite the prevalence of isolation 
by distance (IBD), and violating the assumptions of the model may 
compromise inference (Battey et al., 2020). Accounting for IBD in 
models is now relatively straightforward using the suite of recently 
developed spatially explicit methods (e.g., Bradburd et al., 2018; 
Currat et al., 2019), especially when combined with sophisticated 
statistical analyses like machine learning (although challenges do 
remain to separate IBD from processes like isolation by environ-
ment; see Sexton et al., 2014).

Machine learning approaches relieve some of the statistical 
and computational burdens of demographic model selection by 
processing large amounts of data unconstrained by assumptions 
like data normality (Ripley, 1996). As such, they are able to use 
and learn from the entirety of large datasets, in contrast with ABC 
approaches, and can be less computationally expensive than like-
lihood frameworks. One type of machine learning that is particu-
larly powerful, but underused, in evolutionary biology is supervised 
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machine learning because it can incorporate what is already known 
about the data when making inferences and allows for the mod-
eling of many alternative simulations (Schrider & Kern, 2018). A 
notable subtype of supervised machine learning that has risen to 
prominence in recent years is that of artificial neural networks, so 
named due to their resemblance to human brain neurons (Hopfield, 
1982). Neural networks are excellent at learning complex patterns 
within labeled datasets and can be trained on a broad range of data 
types beyond numerical matrices, for example, sound files (e.g., 
Sprengel et al., 2016), still images (Allken et al., 2019), or video 
(Fan et al., 2016). These data, however, must be labeled with some 
form of output— it is this label that the neural network is ultimately 
being trained to predict. The structure of a basic neural network is 
typically tripartite and consists of (a) a layer of input nodes, which 
handle the data directly; (b) one or more layers of intermediate 
“hidden” nodes; and (c) output nodes, which generate predictions 
(Zell, 1994). Each layer is connected via a series of mathematical 
functions which take input from the previous layer's nodes and 
output the new result to be used in subsequent layers. The specific 
mathematical functions that connect nodes are known as weights, 
and these weights are what the neural network optimizes via an 
iterative process, comparing the actual label associated with the 
data to the predicted one output by the machine learning model 
(Zell, 1994). Given their utility and flexibility with respect to the 
kinds of data that they can learn from, supervised machine learning 
algorithms such as artificial neural networks can be used in demo-
graphic model selection (Schrider & Kern, 2018), giving the modern 
phylogeographer a powerful toolkit for estimating the evolutionary 
histories of their study groups.

Here, we use an important biogeographic barrier to understand 
how biodiversity accumulated in North America Warm Deserts 
across, the Cochise Filter Barrier (CFB; Figure 1). We explore the 
community- wide impact of a barrier on genetic differentiation within 
species, which traits mediate phylogeographic structure, and what 
analytical tools have been used to estimate those impacts. The CFB 
is a well- studied environmental and physical barrier that corresponds 
to a known transition zone between two biotas (Remington, 1968; 
Swenson & Howard, 2005) that divides the Sonoran and Chihuahuan 
Deserts of North America. Dynamic geological and ecological fac-
tors created this barrier, although the timing of the formation of the 
deserts is disputed (Wilson & Pitts, 2010). The southern region of the 
CFB dates back to the uplift of the Sierra Madre Occidental during the 
Oligo- Miocene, whereas the northern region formed during the Plio- 
Pleistocene glacial cycles (Van Devender, 1990; Holmgren et al., 2007) 
and the uplift of the Colorado Plateau (Spencer, 1996). Xeric habitat 
connecting the deserts was ephemeral during the Plio- Pleistocene, 
with glacial advances repeatedly replacing arid lands with forests 
(Thompson & Anderson, 2000; Hafner & Riddle, 2011). This would 
have created desert refugia east and west of the CFB. Environmental 
gradients also exist between the hotter, wetter Sonoran Desert and 
the cooler, dryer Chihuahuan Desert, including elevational and veg-
etational differences and a high- elevation grassland plain between 
the two (Shreve, 1942; Reynolds et al., 2004; Figure 1). Interactions 

among the environment, landscape, and organisms gave rise to the 
region's biodiversity; some taxa are continuously distributed with 
no evidence of differentiation, while others show strong phylogeo-
graphic structure across the CFB (e.g., Zink et al., 2001; Riddle & 
Hafner, 2006). In addition, there are many species that are endemic 
to a single desert (e.g., the saguaro cactus, Carnegiea gigantea; Hutto 
et al., 1986), supporting the idea that the CFB is acting as a filter of 
taxa. The barrier is not one sharp break; rather, the biota is thought to 
turn over approximately between 112 and 108°W longitude (Pyron 
& Burbrink, 2009; Hafner & Riddle, 2011). The CFB is also associated 
with the Western Continental Divide (Castoe et al., 2007), a major hy-
drological and elevational separation between western and eastern 
North America. Despite this, there is no quantitative estimate of the 
position and width of the barrier across taxa. Without understanding 
this, it is difficult to infer whether taxa have all been impacted by the 
same filter and which organismal traits may have been selectively ad-
vantageous for crossing the barrier and maintaining gene flow. It is 
also unclear when divergence happened, with estimates of population 
divergence ranging from the Miocene through the Pleistocene (e.g., 
Myers et al., 2017), or whether dispersal occurred after lineage forma-
tion. Knowing when and where taxa diversify can lead to inferences 
on the processes that cause the initial divergence between popula-
tions, as well as further insights on post- divergence gene flow and the 
impact of IBD within structured lineages.

We describe the diversity in genetic structure in taxa across the 
CFB. Synthesizing what phylogeographic analyses have been used 
to understand the system (e.g., divergence dating and estimates of 
gene flow), we examine which taxa are separated at the CFB, where 
the separation is, and when divergence occurred. Because discrep-
ancies in the location, age, and width of the barrier across taxa can 
illuminate the filtering mechanisms that structure organisms, we ex-
amine the consistency of these metrics in the biota of this region. 
Furthermore, we ask if variation in functional traits corresponds to 
the presence of phylogeographic structure. Under a dispersal limita-
tion hypothesis, the vagility of organisms should be correlated with 
how much phylogeographic structure they display. A barrier should 
have a stronger impact on less vagile organisms. Under a thermo-
regulatory hypothesis, we expect that the ability of an organism to 
regulate their body temperature should be correlated with phylo-
geographic structure if the barrier has more strongly influenced taxa 
during periods of cooling during the Pleistocene. For example, ec-
totherms may be more affected by environmental filters and more 
likely to experience reduced gene flow in the face of spatiotempo-
ral climatic changes if behavioral adaptations are less efficient than 
endothermic adaptations (e.g., Buckley et al., 2012). We simulate 
genomic data under competing diversification scenarios across the 
CFB to determine whether genomic datasets and demographic mod-
els can further clarify how diversification proceeded. Furthermore, 
we test for support for these competing demographic models using 
machine learning and five previously published empirical datasets. 
We aim to describe how synthesizing across empirical, theoretical, 
and simulated phylogeographic studies can lead to novel insights 
about the mechanisms of divergence across biogeographic barriers.
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2  |  MATERIAL S AND METHODS

2.1  |  Characterizing phylogeographic breaks across 
the CFB

Understanding the filtering mechanisms operating on taxa distrib-
uted across barriers requires understanding where phylogeographic 
breaks are and which taxa are impacted. To quantify the patterns and 
frequency of modes of divergence across the CFB, we synthesized 
genetic patterns from published phylogeographic studies with inter-  
and intraspecific sampling across the CFB. To find published studies, 
we used the following Google Scholar search terms in March 2017: 
“Cochise Filter Barrier phylogeography,” “Cochise Filter Barrier ge-
netics,” “Cochise Filter Barrier,” and “Sonoran Desert Chihuahuan 

Desert phylogeography.” We additionally supplemented this list 
with references from previous studies on the CFB (Riddle & Hafner, 
2006; Pyron & Burbrink, 2009; O'Connell et al., 2017) that did not 
explicitly use these keywords. Studies which did not include phylo-
geographic data were excluded.

We recorded the publication date of each study, data type (e.g., 
single- locus, SNP, etc.), and number of loci. Finally, we characterized 
each taxon based on their type of locomotion (following Burbrink 
et al., 2016) and type of thermoregulation (endo-  vs. ectothermic) to 
assess whether these traits are associated with the degree of popu-
lation structuring across the barrier. We also quantified elevational 
preference (lowland, montane, or both) to control for elevational 
differences on diversification. To assess the effects of traits on di-
vergence times, we performed generalized linear mixed modeling 

F I G U R E  1  Examples of habitat and climatic variation in the Sonoran and Chihuahuan Deserts. Center shows Sonoran and Chihuahuan 
desert outlines in green and blue, respectively (Olson et al., 2001), and the dotted red line indicates the Western Continental Divide. Colors 
represent results of a PCA of climatic variables (see Appendix S1), with the first three principal components mapped to green, red, and blue 
channels of the image, respectively. More green indicates hotter summer temperatures. Redder indicates more variable temperatures across 
the year. More blue indicates more summer precipitation. Areas outside of the deserts are the same principal components converted into 
grayscale. Top right shows the section of North America that the center region displays. Photographs around the map show representative 
habitats across the region, with a line leading to the point on the map where the photograph was taken
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(GLMMs) via the ‘lme4’ package version 1.1– 21 (Bates et al., 2014) in 
R version 3.6.1 (R Core Team, 2019) with and without accounting for 
taxonomy and elevation (see Appendix S1 for supplementary anal-
yses). GLMMs and similar models are extensions of the more typi-
cal linear models, with two specific modifications: (a) GLMMs, due 
to being mixed models, are able to specify both fixed and random 
effects, so as to better model unobserved variation in underlying 
data as well as to account for non- independence in the data; and (b) 
GLMMs, due to being generalized models, can process data that are 
non- normal (see Stroup, 2012).

For each taxon, we examined if a specific mode of diversification 
across the barrier was implicated by the authors of the respective 
studies (i.e., allopatry, ecological, hybridization, sexual selection, or 
polyploidy). Next, we assessed whether there was phylogeographic 
structure across the CFB, when structure arose, and if populations 
were reciprocally monophyletic with respect to individual loci 
when tree- based methods were used. Because of the ambiguity in 
the placement of the CFB we chose to characterize whether there 
was a phylogeographic break between 118 and 99°W longitude, a 
much larger range than previously thought (Pyron & Burbrink, 2009; 
Hafner & Riddle, 2011; Myers et al., 2019). In addition, we assessed 
the width of the contact zone for each taxon by taking the locali-
ties of specimens used in each study, or if specimen information was 
not available, by assessing placement of specimens on maps pres-
ent within the figures of the study. We ignored other biogeographic 
breaks known to occur within the species' ranges. Missing data for 
variables not estimated for a given taxon were coded as ambiguous.

To determine when phylogeographic structure formed, we 
categorized the divergence time between populations by epoch: 
Pleistocene (2.58 Ma to 11.7 Ka), Pliocene (5.33 Ma to 2.58 Ma), 
Miocene (23.0 Ma to 5.33 Ma), or overlapping two epochs. We 
separated dates by epoch to allow broad comparisons in diver-
gence across the community. Some studies suggested epochs of 
divergence between populations without explicit estimates of the 
divergence date, which we noted. When applicable, we included the 
full range of error around a divergence date estimate. In addition, to 
assess whether taxa were monophyletic with respect to the CFB, 
we visually assessed gene trees present in the study, if tree- based 
methods were used. Finally, we assessed whether gene flow across 
the barrier was explicitly estimated. If gene flow was not estimated, 
we considered individuals who show admixture in clustering analy-
ses as a proxy for gene flow; we recognize that a high coefficient of 
ancestry could result from incomplete lineage sorting of ancestral 
polymorphisms. We then recorded whether gene flow was present, 
absent, or ambiguous.

2.2  |  Simulation of discrete population 
structure and IBD

From our assessment of the literature across the CFB, two patterns 
were consistently found: discrete phylogeographic structure, or IBD 
without a discrete transition between populations. However, it is 

possible that both of these patterns are simultaneously observable in 
empirical population genetic data (Bradburd et al., 2018) and could be 
distinguished using a simulation- based approach. We used the pro-
gram Slim 3.1 (Haller & Messer, 2019) to build models that explored 
how the processes of allopatric isolation and speciation with gene 
flow interact to generate divergence across a biogeographic barrier.

First, we simulated four demographic models, which varied by 
genetic structure and introgression: (a) a single population model, 
in which only one panmictic population exists across the entire re-
gion, (b) a pure isolation model, in which two populations exist but 
no gene flow is allowed between them, (c) an isolation with migra-
tion model, with two populations and gene flow continuously be-
tween the populations, and (d) a secondary contact model, with gene 
flow allowed during the final 1000 generations of the simulation 
(Figure 2). We chose 1000 generations of the simulation to repre-
sent late- Holocene secondary contact. These four models represent 
different underlying processes of diversification that are commonly 
tested for in phylogeographic studies, and with them we evaluated 
how gene flow and divergence across the CFB varied.

Second, we simulated the presence of IBD to test whether it 
would impede our ability to determine phylogeographic structure. 
When IBD was implemented in a model, simulated individuals could 
only mate and produce offspring with their nearest neighbors. In 
isolation with migration models, gene flow could only occur be-
tween individuals close to the contact zone. In contrast, if IBD was 
not implemented, individuals could choose any other member of the 
population to produce offspring with, irrespective of geographic dis-
tance. These models were spatially explicit with respect to both the 
environment that individuals were simulated on and mate choice and 
production of offspring (see Appendix S1 for complete simulation 
methods).

F I G U R E  2  Visualization of the eight models simulated. Colorful 
tubes indicate populations. Arrows indicate gene flow. Color 
gradients within tubes indicate the presence of IBD, while solid- 
colored tubes indicate no IBD. P: Single population (“panmixia”) 
without IBD. P.I: Single population with IBD. I: Isolation without 
IBD. I.I: Isolation with IBD. G: isolation with migration (“gene flow”) 
without IBD. G.I: isolation with migration with IBD. S: Secondary 
contact without IBD. S.I: Secondary contact with IBD

IBD IBD IBD IBD IBD IBD IBD

P.I I.I G.I S.I

P I G S
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We simulated four different lengths of time: 6000, 21,000, 
120,000, and 1,000,000 generations. These approximately corre-
spond to the mid- Holocene, last glacial maximum, last interglacial op-
timum, and mid- Pleistocene, assuming a generation time of one year. 
We chose to use different time frames to (a) test if we could tell 
apart the different models when divergence times were short, and 
(b) investigate divergence times that could have taken place during 
major environmental shifts in the CFB region and reflect variation 
in the divergence dates found in our review of empirical analysis 
(see Results). This gave 32 simulation regimes in total, which were 
all combinations of the four demographic models, presence/absence 
of IBD, and four time frames.

We selected parameter values for the models based on empir-
ical estimates and suggested practices (Table 1; Nam et al., 2010; 
Provost et al., 2018). We used an ecological niche model (ENM) to 
provide the landscape under which all demographic models were 
simulated. This is coarse- scale resolution, solely to generate a sce-
nario where the area between the deserts is not as suitable as the 
area within the deserts. To do this we used an ENM of Bell's Vireo 
(Vireo bellii), a species that has known population structure across 
the CFB (Klicka et al., 2016), which was built from GBIF data (GBIF.
org, 2017; see Appendix S1 for details on ecological niche model-
ing). We assumed that the niches of the simulated taxa were static 
through time. From the simulated genetic data, we calculated 33 
summary statistics using the R package ‘popgenome’ (Pfeifer et al., 
2014; Table S1.2). These include statistics known to be correlated 
with particular aspects of demographic histories (e.g., Tajima's D, 
Tajima, 1989; haplotype diversity, Stumpf, 2004). We chose to use 
11 of these summary statistics which were non- collinear and pres-
ent results from these 11, but we include results from all 33 in the 
Appendix.

2.3  |  Machine learning framework

We performed model selection across demographic regimes by 
building a neural network using ‘Scikit- learn’, a Python module spe-
cifically for machine learning (Pedregosa et al., 2011). Model selec-
tion was performed so that we could tell whether the demographic 
model generating the data could be accurately detected. We ana-
lyzed each of the time periods together, as well as separately. The 
inputs were the 11 summary statistics outlined above (see Appendix 
S1 for details on the machine learning framework). The network out-
puts a 3x1 matrix where each value in the matrix was the predicted 
population structure, predicted IBD value, and predicted divergence 
time. To evaluate the model performance, we calculated accuracy, 
precision, recall, and the F- score. Accuracy is the percentage of cor-
rectly identified positives. Precision is the number of true positives 
over the number of positives identified (i.e., true and false positives). 
Recall is the number of true positives over the number of actual 
positives (i.e., true positives and false negatives). The F- score is the 
weighted average of precision and recall.

To evaluate the performance of our machine learning mod-
els on empirical data, we acquired previously published genetic 
data for four species of snake (Crotalus atrox, Crotalus scutulatus, 
Pituophis catenifer, and the Lampropeltis getula complex [between 
L. splendida/L. californiae]; Myers et al., 2019) and one species of 
bird (Cardinalis cardinalis, Provost et al., 2018). All species had used 
reduced representation sequencing and had generated hundreds 
to thousands of individual loci, which we analyzed individually for 
all five taxa. In addition, we analyzed all five taxa by concatenating 
individual loci into one single supergene and ran analyses on this 
concatenated locus. We chose this double- pronged approach to 
investigate the variation in estimates among individual loci, as well 

Gens. Dataset Precision Recall F- score
Acc. 
(P) Acc. (I)

Acc. 
(A)

6000 Training 0.68 0.68 0.68 0.71 0.95 n/a

6000 Validation 0.24 0.25 0.24 0.28 0.84 n/a

6000 Test 0.23 0.23 0.23 0.28 0.83 n/a

21,000 Training 0.74 0.74 0.74 0.79 0.94 n/a

21,000 Validation 0.30 0.30 0.30 0.35 0.86 n/a

21,000 Test 0.32 0.33 0.32 0.37 0.87 n/a

120,000 Training 0.83 0.83 0.83 0.85 0.97 n/a

120,000 Validation 0.42 0.42 0.42 0.47 0.88 n/a

120,000 Test 0.39 0.39 0.39 0.47 0.86 n/a

1,000,000 Training 0.74 0.73 0.72 0.76 0.95 n/a

1,000,000 Validation 0.57 0.55 0.52 0.62 0.88 n/a

1,000,000 Test 0.65 0.65 0.64 0.72 0.87 n/a

All Training 0.49 0.48 0.48 0.60 0.92 0.83

All Validation 0.23 0.23 0.22 0.39 0.85 0.68

All Test 0.24 0.24 0.23 0.40 0.86 0.67

TA B L E  1  Model performance. 
Accuracies were calculated for 
phylogeographic structure alone (P), 
IBD alone (I), and ages alone (A) when 
applicable. “Gens.” = generations. “Acc.” 
=accuracy
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as to assess the overall pattern. FASTA files were converted into 
VCF files using all empirical sites, including monomorphic ones and 
ones with missing data. Those VCF files were then converted into 
ms- formatted files. We then used those genetic data to calculate 
the summary statistics mentioned above, so as to give predicted 
demographic information for each taxon.

To ensure that the empirical data and simulated data were as 
similar as possible, we took our existing simulations and converted 
them to include nucleotide base pairs (rather than 0/1 ancestral/de-
rived states only) as well as 50% missing data. To simulate nucleo-
tide base pairs, we randomly assigned the ancestral and the derived 
states to one of A, C, T, or G, without assigning them both the same 
value. To obtain 50% missing data, we randomly selected sites within 
individuals and removed them.

We found that our simulation framework would not calculate 
summary statistics for all of the empirical data, which we suspected 
was due to too much missing data. In particular, calculations of hap-
lotype counts and minor allele frequencies failed (see Table S1.2). 
Because of this, we chose to re- train our neural network without 
the eight summary statistics that were impacted, while also includ-
ing the simulated data that had nucleotides and missing data added 
(see Appendix S1). We found that there were no qualitative perfor-
mance differences between the neural network with the 33 original 
summary statistics and the neural network with the 25 that resulted 
after the eight were removed (see Appendix S1 for classification in-
formation). We assumed a 3- year generation time for the snake spe-
cies (after Ernst & Ernst, 2003) and a 1- year generation time for the 
bird species (after Provost et al., 2018).

3  |  RESULTS

3.1  |  Biota around CFB shows variability in 
evolutionary histories

We found 300 published studies from our search terms, which we 
narrowed down to 99 studies comprising 68 taxa (species complexes 
of 1– 6 species) in 39 families and 19 orders (Asterales, Caryophyllales, 
Cucurbitales, Pinales, Araneae, Coleoptera, Hymenoptera, 
Orthoptera, Scorpiones, Anura, Squamata, Testudines, Galliformes, 
Passeriformes, Piciformes, Artiodactyla, Carnivora, Chiroptera, 
and Rodentia; Table S1.3; see Appendix S2 for data sources). 
Phylogeographic inference was performed using a range of data in-
cluding mitochondrial, chloroplast, and nuclear loci, microsatellites, 
allozymes, restriction fragment length polymorphisms, and reduced 
representation data generated via high- throughput sequencing (e.g., 
RADseq). Some taxa had descriptions of spatial variation based on 
phenotypic assessments, but all but one species had genetic data 
to reinforce those inferences. Seventeen taxa were supported using 
next- generation sequencing data.

The majority of the taxa (~60%) showed evidence for phylo-
geographic structure across the CFB (Figure S1.1). Of the 68 taxa 
examined, 41 showed structure (with 36/41 monophyletic), 13 

showed no structure, and the remainder had unclear results where 
it was ambiguous whether there was structure. Divergence times 
were estimated in 27 of the structured taxa and ranged from the 
Miocene to the Pleistocene with no clear temporal congruence 
across species. Of these, 11/27 were in the Pleistocene alone, with 
an additional eight overlapping the Pleistocene and other epochs 
and the remaining eight restricted to the Miocene and/or Pliocene. 
The remaining 14 taxa that were found to have structure were not 
explicitly dated, but for five of those taxa the Plio- Pleistocene gla-
cial cycles are cited as being a major driver of divergence.

Just under half of the taxa overall (32/68) had an explicit esti-
mate of gene flow (Table S1.3, Figure S1.1). Of these, 5/32 had no 
gene flow across the CFB, 13 had gene flow, and the rest had am-
biguous results. Seventeen species were structured and had gene 
flow estimated, which resulted in 3/17 with no gene flow, 7/17 with 
gene flow, and 7/17 with ambiguous results. Allopatry was the pri-
mary mode of speciation proposed, with isolation- by- environment 
secondary. Some of the studies that found support for gene flow 
(and thereby isolation with migration or secondary contact) con-
cluded that pure allopatric speciation was taking place. Of the 55/68 
taxa that had clear or ambiguous splits across the CFB, allopatric 
speciation was the mode of speciation proposed for 19 taxa, with 
an additional five identifying allopatry with another mode of spe-
ciation, including hybrid speciation, polyploidy, and sexual selection 
(Table S1.3). Another 12 declared isolation- by- environment alone 
(often with the influence of IBD) as the main driver; all these taxa 
had support from next- generation sequencing data and were from 
the same study (Myers et al., 2019). The remaining 19 taxa did not 
have inferred modes of speciation. There appears to be a temporal 
bias in the interpretation of these results: only recent papers (2004– 
2019, median 2017) suggested isolation- by- environment as the 
main driver, while older papers overwhelmingly suggested allopatry 
either alone (1986– 2018, median 2005) or with another mechanism 
(1996– 2014, median 2005).

The location and width of the contact zone varied between spe-
cies and also varied with respect to the divergence times and loco-
motor types (Figure 3; Figures S1.2 and S1.3). The total extent of the 
barrier ranged from 118.3 to 99.5°W longitude, or an 18.8° longitude 
width. Of the 36 species for which we could estimate where the bar-
rier was, 24/36 overlapped 108.6°W, the maximum number of species 
to overlap. The zone of overlap for over 50% of the taxa (18 or more 
species) ranged from 109.3 to 105.6°W. The contact zone widths for 
each taxon ranged from 0.3 to 11.2°W.

The overall width of the contact zone at the barrier varied with 
respect to divergence time (Figure S1.2). Width peaked for taxa 
who diverged in the Pliocene (16.9°) decreasing as divergence dates 
get both older (7.4– 7.7°) and younger (8.2– 9.3°). The contact zone 
width also varied with respect to locomotion type (Figure S1.3; see 
Appendix S1). Walking taxa spanned the entire range of 18.8°. For 
the other locomotion types, the largest- to- smallest width is crawling, 
jumping, flying, sessile, and swimming taxa (12.7– 3.0°). In addition, 
locomotion type and structure co- varied (Figure 4). Flying species 
had the lowest percent of taxa with structure (8/17, ~47%). All 
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swimming and jumping taxa (N = 1; N = 3) had structure. Of the rest, 
walking species had the highest percentage of taxa with structure 
(19/27, ~70%) followed by crawling (10/16, ~63%) and sessile species 
(2/4, 50%).

The influence of thermoregulation on population genetic di-
vergence appears to be less clear than the influence of locomotion 
(see Appendix S1). A higher proportion of ectotherms were found to 
have structure (27/40, ~68%) than endotherms (14/28, 50%), but the 
difference was not significant (χ2 = 2.11, p = 0.15). Ectotherms also 
showed older divergences; all of the taxa whose divergences over-
lapped the Miocene were ectothermic (Figure S1.4) and of the re-
maining, proportionately fewer endotherms diverged in the Pliocene 
(2/9, ~22%) than the Pleistocene (14/27, ~52%). It is possible that 
this was an artifact of how divergence dating was performed across 
these groups with respect to variable substitution rates. Both ther-
moregulation and locomotion are significant predictors of divergence 
date (thermoregulation R2 = 0.14, p = 0.0078, locomotion R2 = 0.25, 
p = 0.025), although not when they were both in the same regression 
(R2 = 0.31, thermoregulation p = 0.060, locomotion p = 0.088). They 
were still significant when accounting for elevational preference, 
taxonomy, or both simultaneously (range R2 = 0.14– 0.34, thermo-
regulation p = 0.0054– 0.014; locomotion p = 0.013– 0.047). Of the 
taxa examined, 34 were found in lowlands, 10 were montane, and 

the remainder were found in both; however, elevational preference 
was not a significant predictor of divergence time (with and without 
taxonomy p = 0.57).

F I G U R E  3  The width of the Cochise Filter Barrier (CFB) contact zone for taxa varies by the timing of divergence and the type of 
locomotion. Colors correspond to unique combinations of divergence and locomotion. Hues represent divergence times (Pleistocene, 
Pliocene, Miocene, Unclear, etc.) and shades represent locomotion types (Crawling, Flying, Walking, etc.). X- axis shows the longitudinal 
range, Y- axis shows the number of species that overlap a given longitude. Vertical dotted line shows previously estimated boundary of CFB 
(Pyron & Burbrink, 2009). See also Figures S1.2 and S1.3
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3.2  |  Accuracy of machine learning classification 
varies with age and phylogeographic history

After calculating summary statistics, removing duplicate simulations 
that produced the exact same statistics within the same model time, 
and eliminating collinear variables, we had 26,131 unique sets of sum-
mary statistics across the 32 models. The number of summary statis-
tic sets per model varied based on the number of generations each 
model ran for (6,000 generations: 834– 1099 sets per model; 21,000: 
1011– 1200; 120,000: 1100– 1100, 1,000,000: 80– 100). Generally, 
younger runs were more likely to produce duplicate results.

The neural network varied in accuracy (Table 1, Table S1.4), but 
was consistently precise at classifying whether models had IBD, less 
good (but consistent) at classifying the number of generations after 
divergence, and inconsistent at classifying the true demographic 
model. When the network was asked to classify if IBD was pres-
ent, it did so with high accuracy regardless of how many generations 
after divergence or how many summary statistics were used (92– 
100% for training, 81– 89% for validation/testing), and overfitting 
appeared to be slight (Table 1, Table S1.4; Figure S1.5). Similarly, 
when the network classified the number of generations since di-
vergence, it did so with 83– 85% accuracy in training, depending on 
how many summary statistics were used, and 66– 68% in validation/
testing. When models were misclassified, it was always to a similar 
number of generations (e.g., 21,000 generation runs were confused 
with 6000 and 120,000 generation runs, but never 1,000,000 gen-
eration runs; Figure S1.5). The differences in training and validation/
testing suggest slight overfitting. Finally, neural network accuracy 
for classifying phylogeographic models was much more variable with 
a lot of overfitting (61– 94% training, 28– 62% validation/testing). 
Accuracy was positively associated with the number of generations 

after divergence models were run for, with those that ran for longer 
having higher ability to differentiate between models (Table 1, Table 
S1.4).

When examining performance across models (Figure 5), IBD had 
similar misclassification rates irrespective of the number of gener-
ations since divergence and phylogeographic structure simulated. 
The exception was for models run for 1,000,000 generations after 
divergence. Here, the single population with IBD models had high 
(worse than random) misclassification rates. Otherwise, models run 
for 6000– 120,000 generations tend to have higher misclassifica-
tion rates, although the trend was reversed for secondary contact 
models, which have lower misclassification rates. Phylogeographic 
structure was also more highly misclassified in models with a short 
number of generations since divergence, irrespective of IBD. Some 
models are classified worse than random based on age: isolation 
with IBD models (6000 generations), and isolation with migration 
both with (21,000 generations) and without IBD (6000 generations, 
21,000 generations).

We examined which misclassifications were most common with 
respect to the number of generations modeled since divergence 
(Figure 6, Figure S1.6). From a phylogeographic structure per-
spective (irrespective of IBD), across all ages of divergence, single 
population models were likely to be misclassified as isolation with 
migration models and vice versa. Likewise, isolation models were 
likely to be misclassified as secondary contact models and vice 
versa. In models that were run for 1,000,000 generations since di-
vergence, misclassifications between isolation/secondary contact 
and isolation with migration/single population were the only mis-
classifications that occurred. However, as the number of genera-
tions since divergence decreased, more kinds of misclassifications 
arose. In models run for 120,000 generations after divergence, 

F I G U R E  5  Neural networks classified models with older divergences much better than models with younger divergences. (a) 
Misclassification rates for the overall models. (b) Misclassification rates for only the phylogeographic models. (c) Misclassification rates 
for only IBD. Model values on the x- axis correspond to models in Figures 2 and 6. Y- axis shows misclassification rate, with higher values 
indicating poorer model performance. Lines of different colors and dash types differentiate the generations simulated, from 6,000 (6 K) to 
1,000,000 (1000 K) generations. P: Single population (“panmixia”) without IBD. P.I: Single population with IBD. I: Isolation without IBD. I.I: 
Isolation with IBD. G: isolation with migration (“gene flow”) without IBD. G.I: isolation with migration with IBD. S: Secondary contact without 
IBD. S.I: Secondary contact with IBD
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isolation with migration and secondary contact were frequently 
misclassified, as were single population and secondary contact. 
All models were confusable in younger divergences, with confu-
sion greatest in models run 6000 years after divergence. This re-
veals that even in lineages with old divergences, single population 
and isolation with migration models are hard to tell apart, as are 
isolation and secondary contact models. However, the younger a 
divergence was, and the less time for genetic differences to accu-
mulate, the easier it was to confuse in all types of models. When 
considering misclassifications simultaneously between IBD and 
phylogeographic structure models, in older models we generally 
found that when models are misclassified between having IBD and 
not having IBD, it tends to be within the same model type (i.e., 
isolation with migration with IBD to isolation with migration with-
out IBD) or between those models that were already identified as 
similar when not considering IBD (i.e., secondary contact with IBD 
to isolation without IBD).

3.3  |  Classification of empirical data using a trained 
neural network

The re- trained neural network (see Appendix S1) was run on genomic 
data for four species of snake (Cr. atrox, Cr. scutulatus, L. splendida- 
californiae, and P. catenifer) and one species of bird (Ca. cardinalis). 
Analyzing all available data for each species as a single concatenated 
supergene, our machine learning algorithm predicted that Cr. atrox, 

Cr. scutulatus, P. catenifer, and Ca. cardinalis were best explained by a 
secondary contact model without IBD effects and for a time since di-
vergence of 1,000,000 generations with relative probabilities greater 
than 99% for each (Figure 7). After accounting for generation time, this 
would suggest an early- Pleistocene to late- Pliocene divergence time. 
Of these species, Cr. atrox and Ca. cardinalis showed strong support for 
structure across the CFB, whereas Cr. scutulatus and P. catenifer have 
conflicting results, and show gene flow and/or IBD across the barrier 
(Castoe et al., 2007; Myers et al., 2017; Myers et al., 2019; Provost 
et al., 2018; Schield et al., 2018). Cardinalis cardinalis additionally has 
previous estimates for low levels of gene flow across ~991,000 years 
of divergence (Provost et al., 2018). Lampropeltis splendida- californiae 
also showed a pattern of secondary contact without IBD effects with 
relative probabilities of over 99%; however, this species was best 
predicted with 6000 generations since population isolation. The rela-
tive probability of L. splendida- californiae having 6000 generations 
since isolation was 75%, with all remaining probability showing that 
the best model was 21,000 generations since isolation, suggesting a 
divergence in the late Pleistocene. This is inconsistent with previous 
work based on mtDNA, which suggests that L. splendida- californiae di-
versified across the CFB from 750,000 to 3,440,000 years ago (Myers 
et al., 2017; Pyron & Burbrink, 2009). We report the results of the indi-
vidual loci for these four snake species in the supplementary material 
(see Appendix S1). Generally, there was a large amount of variation, 
with nearly every combination of demographic history, IBD presence 
or absence, and generation time since isolation being present in at 
least one locus (Figure 7).

F I G U R E  6  Overall model classifications 
are easily confused at young ages but 
improve with older ages. Arrows begin at 
the true model and end at the assigned 
model. Line thickness of arrows indicates 
the percentage of time those assignments 
are made. Assignments under 10% are 
omitted for clarity. Demographics include 
single panmictic populations (“P,” grey), 
isolation with migration or gene flow 
(“G,” yellow), secondary contact (“S,” 
blue), and isolation (“I,” red). Suffix of “.I” 
after demography indicates that IBD is 
present. (a) 6000 generations. (b) 21,000 
generations. (c) 120,000 generations. (d) 
1,000,000 generations. Models with IBD 
are on the right, models without IBD are 
on the left
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4  |  DISCUSSION

We found that the communities of organisms that are co- distributed 
across the CFB show a wide amount of variation in their phylogeo-
graphic histories. However, some commonalities emerge. Many of the 
taxa surveyed show a Pleistocene divergence time. Ectotherms are 
more likely to diverge across the CFB than endotherms, and similarly, 
more vagile organisms are less likely to diverge. Leveraging machine 
learning, we used five exemplar datasets and predicted their demo-
graphic histories from simulated and empirical genetic data. All five 
species are generally predicted to have had a long period of genetic 
isolation, often with recent secondary contact. However, individual 
loci show that within species there is a high degree of variation in pre-
dicted phylogeographic histories. Divergence throughout the region 
appears, therefore, to be a combination of forces, ranging from al-
lopatric isolation to ecological speciation, and combining empirical and 
simulation methods gives us a viable way forward for diagnosing how 
population structure and diversification proceed across this landscape.

Moving beyond descriptive narratives of landscape change 
generating biodiversity and understanding how taxa interact with 

barriers represent major challenges of biogeographic research. We 
used the Sonoran and Chihuahuan Deserts as an exemplar system 
for characterizing genetic differentiation among two regions, quan-
tifying the temporal and spatial dynamics in phylogeographic struc-
turing associated with a filter barrier. The range in divergence times 
and phylogeographic break locations in taxa distributed across the 
deserts reflects the semi- permeability of the CFB. The variability 
of molecular data used in this synthesis was not suitable for a for-
mal test of simultaneous divergence (e.g., Hickerson et al., 2006), 
but the wide disparity of divergence times suggests taxa have been 
diverging across the CFB for millions of years (Myers et al., 2017). 
Locomotive and thermoregulatory traits help to explain this varia-
tion, suggesting that organisms that are more vagile and less depen-
dent on external temperatures (i.e., endotherms) may be better at 
evading the impacts of the barrier, and selective pressures both on 
movement and on environmental tolerances might determine which 
taxa diverge. Divergence in allopatry was typically invoked as the 
main mode of differentiation across the CFB, but we found evidence 
of all other processes in addition to allopatry (i.e., ecological diver-
gence, polyploidy, hybrid speciation, and sexual selection). Fully 

F I G U R E  7  Predicted support for 
empirical species' divergence time in 
number of generations (a), demographic 
history (b), and presence or absence of 
isolation by distance (c). Y- axis shows 
the relative proportion of support for 
each value, with different colors showing 
different values. X- axis shows species: 
Crotalus atrox (“Ca”), the Lampropeltis 
getula complex or L. splendida- californiae 
(“Lg”), Pituophis catenifer (“Pc”), Cr. 
scutulatus (“Cs”), and cardinalis cardinalis 
(“Cc”), where suffix of “.G” and “.L” indicate 
the data analyzed are a supergene or 
individual loci, respectively (i.e., “Ca.G” = 
Crotalus atrox supergene). Demographic 
codes in (b) include single panmictic 
populations (“P”), isolation with migration 
or gene flow (“G”), secondary contact (“S”), 
and isolation (“I”)
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understanding how the CFB filters the taxa that are co- distributed 
across it necessitates a deeper understanding of the mechanisms 
causing differentiation more broadly in the region. Using simulations 
and model selection approaches can help illuminate those mech-
anisms via rigorous hypothesis testing and replication, which we 
have illustrated in our empirical work herein. These methods offer 
promise by more accurately identifying modes of differentiation, but 
the modeled scenarios can be difficult to distinguish. Nevertheless, 
simulation methods contextualize empirical results and show the 
utility of genomic- scale data in uncovering phylogeographic histo-
ries, allowing us to understand how organisms might be expected to 
diversify under different known conditions.

4.1  |  The communities around barriers are 
influenced by a multitude of forces

Biogeographic barriers are typically viewed as abrupt transitions 
between two biotas, but our analysis showed the conditions in 
which this view does not hold. The entities identified as biogeo-
graphic barriers may represent a combination of forces that gen-
erated the contemporary distributions of taxa, which have a wide 
longitudinal range of phylogeographic breaks across the CFB after 
accounting for uncertainty. Most species have ranges that overlap 
~109– 106°W, a shift eastward from the ~112– 108°W that was con-
ventional in the literature (although very few species do not over-
lap the original distribution). This uncertainty may have numerous 
causes. First, barriers can be ephemeral over time, for example, due 
to river capture events (Tagliacollo et al., 2015), sea- level changes 
(Elias et al., 1996), or major climatic shifts (possibly including the 
CFB; Holmgren et al., 2007). Additionally, organisms have the ca-
pacity to disperse, which can retain or reintroduce gene flow and 
connectivity across barriers (Brandley et al., 2010). Population ge-
netics theory also predicts that even in the absence of a barrier, 
phylogeographic structure can arise due to simple density troughs, 
where abundances are low and dispersal out of these troughs 
fails (Barrowclough et al., 2005; Barton & Hewitt, 1981). Finally, 
within the CFB, numerous studies lack individuals from the transi-
tion zone and therefore it is possible that incomplete sampling may 
be a culprit for the observed differences between taxa. Contact 
zone widths cannot be estimated without carefully collected tran-
sects through a region. Fortunately, targeted sampling across the 
CFB will resolve this discrepancy, especially with the addition of 
genome- level sampling. In our analyses here, we used all individu-
als to calculate summary statistics, but future work could subset 
individuals and create a sensitivity analysis to understand biases 
that could arise from incomplete sampling.

4.2  |  Locomotion and thermoregulation as filters

Our results show the expected relationship between locomotion 
type and how organisms respond to the barrier. We found that 

flying organisms are less likely to have diverged across the barrier. 
Flying organisms can have higher dispersal ability, allowing them to 
potentially bypass any filtering mechanisms of a biogeographic fil-
ter barrier, and previous work has shown that flying organisms tend 
to show less genetic differentiation than taxa with other locomo-
tive modes (Medina et al., 2018). The contact zone at the barrier 
also has a smaller estimated width for flying taxa than those with 
other forms of locomotion. Under an assumption where flying con-
fers higher dispersal, it is counterintuitive that they should show a 
narrow range for the CFB, unless dispersal is unable to counteract 
the strength of the filters operating or the degree of environmen-
tal changes are relatively stronger than the effects of organismal 
traits. Flying organisms have a higher proportion of Pleistocene di-
vergences relative to other epochs even after accounting for eleva-
tion, which has been found across other biogeographic barriers (e.g., 
Bacon et al., 2015). It is unclear whether the Pleistocene climatic 
shifts themselves caused diversification or if other processes drove 
diversification during this epoch. Alternatively, flying species may 
be able to more easily find suitable habitat across the barrier rela-
tive to other taxa, which would weaken the impact of the CFB. This 
would explain both the shallow divergences and the narrow width. 
In addition, some taxa are clearly under- sampled (e.g., sessile plants) 
or less abundant in desert habitats (e.g., fishes), which may explain 
the discrepancies. Increasing sampling of organisms with different 
forms of dispersal could clarify the trends identified here.

Ectothermic taxa appear more likely to diversify across the 
CFB than endothermic taxa, although the patterns are not signif-
icant. As ectothermic organisms are reliant on external tempera-
ture regulation (Boyko, 2014), it is feasible that any environmental 
changes could disproportionately affect them compared to endo-
therms. Under this assumption, Pleistocene climate change would 
have been an effective filter on ectotherms. Alternatively, local 
adaptation could be a stronger process in ectotherms relative to 
endotherms, which would explain divergence under an ecological- 
speciation hypothesis (Nosil, 2012). If so, finding the traits that are 
most important in driving this adaptation, perhaps body size or dis-
persal ability as mediated by physiology, would be key.

This work reveals the impact of locomotive mode and physiol-
ogy on population genetic divergence across a biogeographic bar-
rier. From this baseline, future studies could explore other traits 
that may mediate species diverge across this and other barriers. For 
example, microhabitat preferences, body size, diet, or interspecific 
interactions could be driving the pattern in addition to the traits 
we identified here. The relative width of the contact zone for a 
taxon could change through time as species- specific traits interact 
with the properties of the barrier, for example, whether it allows 
frequent or infrequent dispersal (see Pyron & Burbrink, 2009), is 
long- lived or ephemeral, and/or relocates through time. Both of 
these conditions are presumably the result of selection over long 
periods of time, whereas more stochastic forces could be at play 
in the short term. In addition, it is unclear which traits enhance 
and reduce dispersal through the CFB across time periods; the 
region experienced dramatic environmental changes across the 
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range of divergences found here. Overall, phenotypic traits could 
be important for determining why multiple co- distributed taxa are 
concordant or discordant with respect to their phylogeographic 
histories (Zamudio et al., 2016).

One issue that remains to be resolved is when taxa are en-
demic to only one side of the CFB— for example, Saguaro Cactus, 
Sidewinder, Tiger Rattlesnake, Gila Woodpecker, and Costa's 
Hummingbird on the Sonoran side of the barrier, and Grey- banded 
Kingsnake, Rock Rattlesnake, and Golden- Fronted Woodpecker on 
the Chihuahuan side. These taxa could have been unable to cross 
the barrier initially, were once co- distributed but have since been 
extirpated (or speciated) on one side, or experienced competitive ex-
clusion. Distinguishing between these scenarios would likely require 
fossil or paleoecological evidence (e.g., packrat middens; Betancourt 
et al., 1990; Van Devender, 1990) depending on the age of the taxon. 
Our work only assessed taxa that were co- distributed across the 
barrier and had individuals collected on each side, but understand-
ing why organisms are endemic to only one desert would improve 
knowledge of what factors make the CFB a filter barrier. Do partic-
ular traits cause organisms to be unable to pass through the CFB, 
or is it perhaps competition between organisms with similar niches 
or even close relatives? These questions will need to be resolved to 
fully understand how the community in the Sonoran and Chihuahuan 
Deserts has assembled through time.

4.3  |  Genome- level data can clarify 
phylogeographic patterns

Using machine learning methods on large, simulated datasets, 
combined with empirical and theoretical studies, allows for testing 
between phylogeographic models with numerous parameters of in-
terest. For example, the divergence mechanisms in Australian hon-
eyeaters are ambiguous in empirical data but may be resolvable using 
a simulated approach (Toon et al., 2010). Our simulations here are 
only a subset of model parameter space and larger genomic regions, 
population growth, and selection could be considered (Carstens 
et al., 2013; Ewing & Jensen, 2016). Likewise, we do not account for 
changes in parameter space over time (e.g., population size, mutation 
rate, and environmental factors). Demographic expansions and con-
tractions in effective population size cause changes in the impact of 
genetic drift, and many phylogeographic studies find these changes 
in concordance with genetic structure (e.g., Charruau et al., 2011; 
Smith et al., 2011). Changes in habitat suitability over time can lead to 
these demographic changes; fortunately, spatially explicit methods 
can incorporate these changes via the addition of paleoclimate suit-
ability models, which now extend back to the Pliocene (Brown et al., 
2018; Dowsett et al., 2016).

The neural network approach we used here allows for direct es-
timation of the model power and model identifiability in test data, 
which can be leveraged when analyzing both simulated and empiri-
cal datasets. Validation schemes indicate how well a model performs 
on known simulationsEAM was supported through the Peter Buck 

models, giving estimates of error and describing which models have 
problems with identifiability. Furthermore, once neural networks 
such as ours are trained, almost no additional computation time is 
required to classify further data; it only needs to be trained once. 
Expanding on a neural network approach, for instance, to classify 
more empirical species, is computationally trivial, and the more a 
neural network is used after it is trained, the more computationally 
efficient it becomes.

The identifiability of our models was high when classifying IBD 
and number of generations. However, at young divergence times, 
our method struggled to tell apart different models, implying that 
differences between isolation and secondary contact are inscrutable 
at shallow- divergence histories. The difficulty in identifying models 
is well known with certain summaries of genomic data, for exam-
ple, when using the site frequency spectrum effective population 
size is hard to estimate, especially when it has been dynamic over 
time (Lapierre et al., 2017; Terhorst & Song, 2015), and the presence 
of ancient population structure can erroneously appear as current 
gene flow (Eriksson & Manica, 2014). If these tenets also hold for 
additional summary statistics, they must be accounted for in future 
work. Nevertheless, this serves to reinforce that biologically simi-
lar models tend to be confused with one another (e.g., Roux et al., 
2016). Further work will require additional testing as to the impact 
of model selection on different biological scenarios.

We validated our simulated models by using previously published 
data. We acknowledge that the simulation framework developed 
herein is a coarse scale meant to illustrate the utility of neural net-
works in classification of demographic histories across an exemplar 
biogeographic filter barrier. Although the neural networks trained 
with simulated and empirical data were similar in terms of perfor-
mance, they were not entirely the same due to the differences in the 
underlying summary statistics used. Any modifications of the sum-
mary statistics require the neural network to be re- trained, as non- 
analogous data will not be classified correctly. Future researchers 
using similar frameworks must make sure that their machine learning 
models are trained with data that match the empirical data of inter-
est as closely as possible to alleviate these issues.

Overall, we found variation between the previous empirical 
estimates of demographic history in the five species and our pre-
dicted values. Generally speaking, the predicted demographics 
from our neural network (Pleistocene, secondary contact, or pure 
isolation, with IBD) are close to the actual estimates for these five 
taxa and are in line with the frequently confused models from the 
simulations (e.g., Figure 6). The discrepancies between these two 
estimates of demographic history of these five taxa could be be-
cause of differences in the methodology used. Complex evolution-
ary histories are difficult to detect, and examining loci individually 
we see that there are potentially many interacting and conflicting 
signals in the genomes of these organisms. Despite these discrep-
ancies, the fact that our estimates were close to previous ones and 
were computationally fast suggests that using similar frameworks 
is a viable method of determining phylogeographic history in ac-
tual systems.
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5  |  CONCLUSION

In conclusion, we synthesized phylogeographic studies across an 
exemplar barrier, examining how biogeographic filters affect com-
munities. Among all species, gene flow, phylogeographic structuring, 
and timing of divergence all varied substantially. The location of the 
barrier and width of the contact zone are related to locomotion and 
thermoregulation, irrespective of phylogeny and elevational pref-
erences. Simulations and machine learning allowed us to quantify 
spatiotemporal evolutionary histories, finding numerous aspects 
of demography including gene flow and isolation by distance are 
major confounding variables. Overall, barriers interact with traits of 
species to cause heterogeneous differentiation, but identifying the 
exact causes remains challenging.
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