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Abstract 1 

Model-based approaches that attempt to delimit species are hampered by computational 2 

limitations as well as the unfortunate tendency by users to disregard algorithmic assumptions. 3 

Alternatives are clearly needed, and machine-learning (M-L) is attractive in this regard as it 4 

functions without the need to explicitly define a species concept. Unfortunately, its performance 5 

will vary according to which (of several) bioinformatic parameters are invoked. Herein, we gauge 6 

the effectiveness of M-L-based species-delimitation algorithms by parsing 64 variably-filtered 7 

versions of a ddRAD-derived SNP dataset collected from North American box turtles (Terrapene 8 

spp.). Our filtering strategies included: (A) minor allele frequencies (MAF) of 5%, 3%, 1%, and 9 

0% (=none), and (B) maximum missing data per-individual/per-population at 25%, 50%, 75%, 10 

and 100% (=no filtering). We found that species-delimitation via unsupervised M-L impacted the 11 

signal-to-noise ratio in our data, as well as the discordance among resolved clades. The latter may 12 

also reflect biogeographic history, gene flow, incomplete lineage sorting, or combinations thereof 13 

(as corroborated from previously observed patterns of differential introgression). Our results 14 

substantiate M-L as a viable species-delimitation method, but also demonstrate how commonly 15 

observed patterns of phylogenetic discordance can seriously impact M-L-classification. 16 

 17 

Keywords: ddRAD, discordance, filtering, missing data, species tree, VAE   18 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2020.05.19.103598doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.19.103598
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

1 INTRODUCTION 19 

Species are recognized as the currency of biodiversity, yet defining what constitutes a species has 20 

been hampered by subjective interpretations. This in turn creates downstream issues for 21 

conservation (Mace 2004), where spurious ‘splitting’ or ‘lumping’ impede an equitable allocation 22 

of limited resources. Although genomic approaches based on the multispecies coalescent (MSC) 23 

are promising and have been commonly applied to the species problem (Allendorf et al. 2010), 24 

conflicting genome-wide signals are widely apparent due to incomplete lineage sorting (ILS) and 25 

gene flow (Funk & Omland 2003). Two MSC methods, BPP and BFD* (Yang & Rannala 2010; 26 

Leaché et al. 2014), seemingly over-split in the presence of strong population structure 27 

(Sukumaran & Knowles 2017) or with continuous geographic distributions (Chambers & Hillis 28 

2019). Both are also computationally limited when applied to large datasets. As model 29 

complexity and data expand concomitantly, so also do: 1) efforts required to computationally 30 

explore appropriate parameter space; and 2) the probabilities that models fail to accommodate 31 

process. Herein, we explore alternative approaches for the parsing of high-dimensionality data by 32 

evaluating the performance of recently developed machine-learning (M-L) algorithms and 33 

classificatory approaches in successfully adjudicating variably-filtered versions of a ddRAD-34 

derived SNP dataset.  35 

‘Unsupervised’ machine learning methods (UML) are of particular interest for group 36 

delimitation, in that they do not require a priori designations to train the classification model. 37 

Several UML classifiers lend themselves to species delimitation, including: Random Forest (RF; 38 

Breiman 2001), t-distributed stochastic neighbor embedding (T-SNE; Maaten & Hinton 2008), 39 

and variational autoencoders (VAE; Kingma & Welling 2013). Each has distinct advantages: RF 40 
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uses randomly replicated data subsets to develop ‘decision trees’ that are subsequently aggregated 41 

(=‘forest’), with classificatory decisions parsed as a majority vote. The random sub-setting 42 

approach is robust to correlations among features (=summary statistics or principal components 43 

used for prediction) as well as model overfitting (i.e., over-training the model such that it does not 44 

generalize to new data). One stipulation is that features must lack undue noise (Rodriguez-45 

Galiano et al. 2012). By contrast, T-SNE creates clusters in reduced-dimension space, typically a 46 

2D plane distilled from multi-dimensional data, and as such conceptually resembles principal 47 

components analysis (Maaten & Hinton 2008). On the other hand, VAE employs neural networks 48 

to ‘learn’ patterns within multidimensional data extracted from a compressed, low-dimensionality 49 

(=‘encoded’) representation. Again, an ordination technique is simulated but without imposing 50 

linear/orthogonal constraints, such that a statistically interpretable result emerges that is 51 

appropriate for highly-complex data (Derkarabetian et al. 2019).  52 

Some algorithms are robust to gene flow (Derkarabetian et al. 2019; Newton et al. 2020; 53 

Smith & Carstens 2020), yet a greater number of tests must be performed across diverse systems 54 

so as to understand which parameters impinge upon performance. Potentials include: Data 55 

quantity (Newton et al. 2020), the proportion of missing data (Mussmann et al. 2020), and 56 

evolutionary complexity (Austerlitz et al. 2009). Here, we employ M-L algorithms alongside 57 

coalescent methods such as BFD* (Leaché et al. 2014) as vehicles to parse a taxonomically 58 

recalcitrant clade. Included algorithms are: Process-based RF (DELIMITR; Smith et al. 2017; 59 

Smith & Carstens 2020) and unsupervised RF, T-SNE, and VAE, as implemented in 60 

Derkarabetian et al. (2019). 61 

 62 
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1.1 Species concepts and their evolution in Terrapene 63 

North American box turtles (Emydidae: Terrapene) are a primarily terrestrial group that includes 64 

five currently recognized species (Minx 1996; Iverson et al. 2017): Eastern (Terrapene carolina), 65 

Ornate (T. ornata), Florida (T. bauri), Coahuilan (T. coahuila), and Spotted (T. nelsoni), with a 66 

sixth (T. mexicana) proposed (Martin et al. 2013). Terrapene carolina is split into two subspecies 67 

east of the Mississippi River and south through the Gulf Coast [Woodland (T. c. carolina) and 68 

Gulf Coast (T. c. major); Figure 1]. Terrapene mexicana contains three subspecies: Three-toed 69 

(T. m. triunguis); Mexican (T. m. mexicana); and Yucatan (T. m. yucatana) that range across 70 

southeastern and midwestern United States, the Mexican state of Tamaulipas, and the Yucatan 71 

Peninsula. Ornate (T. ornata ornata) and Desert (T. o. luteola) inhabit the Midwest and 72 

Southwest U.S. and Northwest México, while Southern and Northern Spotted box turtles (T. 73 

nelsoni nelsoni and T. n. klauberi) occupy the Sonoran Desert in western México. Terrapene 74 

coahuila is semi-aquatic and restricted to Cuatro Ciénegas (Coahuila, México), while Florida box 75 

turtle occurs in Peninsular Florida. 76 

Morphological analyses delineate T. carolina/mexicana as a single species, sister to T. 77 

coahuila (Minx 1992, 1996), as supported by genetic studies (Feldman & Parham 2002; Stephens 78 

& Wiens 2003). Martin et al. (2013) elevated T. mexicana, and nested T. coahuila within T. 79 

carolina. Terrapene carolina carolina is sister to T. c. major/T. coahuila, although gene flow was 80 

suspected with T. c. major. Terrapene carolina major was recently demoted to an intergrade with 81 

subsequent loss of subspecific status (Butler et al. 2011; Iverson et al. 2017). However a recent 82 

genomic study supported pure T. c. major populations in Florida and Mississippi (Martin et al. 83 

2020). Similarly, T. bauri (formerly T. carolina bauri) was recently elevated (Butler et al. 2011; 84 
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Iverson et al. 2017), but more substantial evidence is needed (Martin et al. 2013). For clarity, we 85 

retain the nomenclature of Martin et al. (2013, 2014), with T. c. major and bauri representing T. 86 

carolina subspecies.  87 

One explanation for the enigmatic classification of T. carolina and T. mexicana involves 88 

hybridization (Auffenberg 1958, 1959; Milstead & Tinkle 1967; Milstead 1969). Some 89 

researchers (Fritz & Havaš 2013, 2014) interpreted reproductive semi-permeability as 90 

justification sufficient to collapse the southeastern taxa. However, their classificatory status must 91 

be re-examined, as indicated by results modulating the species boundaries of southeastern 92 

Terrapene (Martin et al. 2020).  93 

Taxonomic disputes in Terrapene highlight the philosophical disparity among species 94 

definitions [e.g., biological (Mayr 1963) versus phylogenetic (Eldredge & Cracraft 1980)]. The 95 

approach advocated herein acknowledges that operational criteria among concepts are intimately 96 

related. Specifically, reproductive barriers (through time) beget genealogical concordance, while 97 

contemporary evaluations of gene flow are contextualized via phylogenetic/phylogeographic 98 

perspectives (Avise 2000a; b). We thus subscribe to a ‘unified species concept’ (De Queiroz 99 

2007) wherein the primary criterion for formal taxonomic rank is the existence of evolutionary 100 

lineages (e.g., as distinct metapopulations), with evidence via reproductive isolation, 101 

phylogenetic-phylogeographic resolution, and phenotypic adaptation, with all acknowledged as 102 

being inherently linked. Here, our clustering and classificatory approaches define molecular 103 

diagnosability, and as such variably place Terrapene lineages along a speciation continuum (Via 104 

2009; Nosil & Feder 2012; Edwards et al. 2016; Martin et al. 2020).  105 

 106 
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2 MATERIALS AND METHODS 107 

2.1 DNA extraction and library preparation 108 

Tissue samples were obtained from museums, agencies, and volunteers (Supplementary 109 

Information Table S1) and stored at-20°C. Genomic DNA was extracted via spin-column kits: 110 

DNeasy Blood and Tissue (QIAGEN), QIAamp Fast DNA (QIAGEN), and E.Z.N.A. Tissue 111 

DNA Kits (Omega Bio-tek). Extracted DNA was quantified using Qubit fluorometry (Thermo 112 

Fisher Scientific), and characterized using gel electrophoresis on 2% agarose.  113 

Samples were processed via ddRADseq (Peterson et al. 2012), with ~500-1,000ng of 114 

genomic DNA/sample digested with PstI and MspI at 37°C for 24 hours. Samples were bead-115 

purified (Beckman-Coulter) at 1.5X concentration then standardized at 100ng. Barcoded adapters 116 

were ligated before pooling 48 samples per library. Taxa were spread across libraries to mitigate 117 

batch effects then size-selected (454-509 bp, including ligated adapters) on a Pippin Prep (Sage 118 

Science). Adapter-extension was performed via twelve-cycle PCR, followed by 1×100 119 

sequencing on the Illumina Hi-Seq 4000 (University of Oregon/Eugene), with two indexed 120 

libraries pooled/lane. 121 

 122 

2.2 Quality control and assembly 123 

FASTQCv.0.11.5 was used to assess sequence quality (Andrews 2010), with raw reads 124 

demultiplexed via IPYRAD v.0.7.28 (Eaton & Overcast 2020), allowing for one barcode mismatch 125 

as a maximum. Low quality sequences (>5 bases with Q<33) and adapters were removed. 126 

Assembly was reference-guided using Terrapene mexicana (GCA_002925995.2), with unmapped 127 
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reads discarded. To reduce error, only loci exhibiting ≥20X coverage were retained (Nielsen et al. 128 

2011). We also excluded loci with excessive heterozygosity (≥75% of individual SNPs), <50% 129 

global occupancy, or >two alleles/sample. 130 

 131 

2.3 Phylogenomic inferences 132 

F1 and F2-generation hybrids previously identified in a population-level analysis (Martin et al. 133 

2020) were excluded as a means of mitigating impacts of contemporary gene flow on species tree 134 

inference (Long & Kubatko 2018). We then employed SVDQUARTETS (Chifman & Kubatko 135 

2014) filtered to one SNP per locus to reduce linkage bias, with exhaustive quartet sampling and 136 

100 bootstrap pseudo-replicates. Taxon partitions were grouped by subspecies and U.S./Mexican 137 

state locality, with Emydoidea blandingii and Clemmys guttata as outgroups.  138 

We also employed a polymorphism-aware model (POMO: Schrempf et al. 2016), as 139 

implemented in IQ-TREE v1.6.9 (Nguyen et al. 2015), with full-locus alignments and 1,000 140 

ultrafast bootstrap (UFBOOT) replicates (Hoang et al. 2017). The maximum virtual population 141 

size was 19, with discrete gamma-distributed rates=4.  142 

Using ten-thousand re-samplings, we performed topology tests (IQ-TREE) with seven 143 

statistical criteria on the SVDQUARTETS and POMO trees, as well as a previously published 144 

morphological (Minx 1996) and a molecular hypothesis (Martin et al. 2013). Additional details 145 

are in Supplementary Information Appendix A.1.1. 146 

A lineage tree was generated (IQ-TREE v2.0.6; Minh et al. 2020) and full-locus partitions 147 

merged (Chernomor et al. 2016), with the top 10% of combinations employed and a per-partition 148 

model search (MODELFINDER: Kalyaanamoorthy et al. 2017). Node support was assessed using 149 
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1,000 UFBOOT replicates and site-wise concordance factors (SCF; Minh et al. 2018). The SCF 150 

values were calculated from 10,000 randomly sampled quartets.  151 

 152 

2.4 Divergence dating 153 

A full concatenation tree was time-calibrated via least square dating (LSD2), as implemented in 154 

IQ-TREE (To et al. 2016). Four fossil calibration points were used (Holman & Fritz 2005; Spinks 155 

& Shaffer 2009), including the following most recent common ancestors (MRCAs): (1) T. ornata 156 

and T. carolina/T. mexicana, minimally constrained to 13 million years ago (Mya); (2) T. o. 157 

ornata and T. o. luteola (9.0-13.0 Mya); (3) T. carolina and T. mexicana (9.0-11.0 Mya); and (4) 158 

Terrapene and Clemmys/Emydoidea [(maximally constrained to 29.4 Mya) (per Martin et al. 159 

2013)]. Branch lengths were simulated from a Poisson distribution with 1,000 replicates to assess 160 

95% confidence intervals.  161 

 162 

2.5 Species delimitation using BFD* 163 

We employed Bayes Factor Delimitation (BFD*; Leaché et al. 2014) as a comparative baseline. 164 

Given its computationally-intense process, each taxon was subset to a maximum of five 165 

individuals containing the least missing data (N=37+outgroups). Sites with >50% missing data in 166 

any population were removed (see Supplementary Information Appendix A.2.1 for prior selection 167 

and data formatting steps for BFD*).  168 

For each BFD* model, we used 48 path-sampling steps, 200,000 burn-in, plus 400,000 169 

MCMC iterations, sampling every 1,000 generations. Path-sampling was conducted with 200,000 170 

burn-in+300,000 MCMC generations, α=0.3, 10 cross-validation replicates, and 100 repeats. 171 
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Trace plots were visualized in TRACER v1.7.1 to evaluate parameter convergence and compute 172 

effective sample sizes (ESS; Rambaut et al. 2018). Bayes factors (BF) were calculated from 173 

normalized likelihood estimates (MLE) as [2 × (MLE1-MLE2)]. We considered the following 174 

scheme for model support: 0<BF<2=no differentiation; 2<BF<6=positive; 6<BF<10=strong; and 175 

BF>10=decisive support (Kass & Raftery 1995). 176 

 177 

2.6 Preparing and executing UML datasets 178 

To assess the influence of bioinformatic choices on M-L species delimitation, we performed 179 

missing data filtering sweeps to produce 64 datasets across three filtering options. Missing data 180 

was filtered per-individual and per-population, with the maximum permitted occupancy set to 181 

25%, 50%, 75%, and no filtering (=100%). Datasets were also filtered by minor allele frequency 182 

(MAF) at values of 5%, 3%, 1%, and 0% (=no MAF filter). Custom scripts were employed for all 183 

filtering steps (https://github.com/tkchafin/scripts). 184 

RF and T-SNE (Breiman 2001; Maaten & Hinton 2008) were executed and visualized using 185 

an R script [Derkarabetian et al. (2019); 186 

https://github.com/shahanderkarabetian/uml_species_delim]. We ran 100 replicates for each of 187 

the 64 datasets, with data subsequently represented as scaled principal components 188 

(ADEGENETv2.1.1; Jombart & Ahmed 2011) in Rv3.5.1 (R Development Core Team 2018). To 189 

generate RF predictions, we averaged 10,000 majority-vote decision trees. Clustered RF output 190 

was visualized using both classic and isotonic multidimensional scaling (CMDS and ISOMDS; 191 

Shepard et al. 1972; Kruskal & Wish 1978). We ran T-SNE for 20,000 iterations, with equilibria 192 
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of the clusters visually observed. Perplexity, which limits the effective number of T-SNE 193 

neighbors, was subjected to a grid search with values from 5-50, incremented by five. 194 

VAE (Derkarabetian et al. 2019) employs neural networks to infer the marginal likelihood 195 

distribution of sample means (μ) and standard deviations [(σ) (i.e. ‘latent variables’)]. As with RF 196 

and T-SNE analyses, VAE was also run with 100 replicates to assess cluster stochasticity. Each of 197 

the 64 datasets were split into 80% training/20% validation datasets using the train_test_split 198 

module (scikit-learn: Pedregosa et al. 2011), with model loss (~error) visualized to determine the 199 

optimal number of ‘epochs’ (=cycles through the training dataset). VAE should ideally be 200 

terminated when loss converges on a minimal difference between training and validation datasets 201 

[the ‘Goldilocks zone’; Supplementary Information Figure S1 (Al’Aref et al. 2019)]. 202 

Overfitting is indicated when model loss in the validation dataset escalates, whereas 203 

underfitting is a failure to reach minimum points (=inability to generalize to unseen data). Thus, 204 

we added minor modifications to the original Python script (Derkarabetian et al. 2019) by 205 

implementing an early stopping callback (keras.callbacks Python module; Chollet 2015), which 206 

terminates training when model loss fails to improve for 50 epochs, then restores the best model 207 

prior to the tolerance period (see Supplementary Information Appendix A.2). 208 

 209 

2.7 K-selection for RF, T-SNE, and VAE 210 

Two clustering algorithms (R-scripts: Derkarabetian et al. 2019), were used to identify clusters 211 

and derive optimal K for RF and T-SNE analyses. The first [Partitioning Around Medoids (PAM); 212 

Kaufman and Rousseeuw 1987] minimizes the distance of intra-cluster points to a centroid. The 213 

program requires K to be defined a priori, and thus K=1-10 were tested. The second (hierarchical 214 
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clustering, HC; Fraley & Raftery 1998) iteratively merges points with minimal dissimilarity. 215 

After clustering, optimal K was chosen using the gap statistic (GS) and highest mean silhouette 216 

width [HMSW; Rousseeuw (1987), Tibshirani et al. (2001)]. 217 

VAE used DBSCAN (Ester et al. 1996), as implemented in a custom Python script 218 

(vae_dbscan.py), to derive clusters using a distance threshold (ε) rather than a priori setting of K. 219 

Here we used 2 × the standard deviation, but averaged globally across all samples (following 220 

Derkarabetian et al. 2019).  221 

 For plotting, we implemented a permutation-based heuristic search to align K across all 222 

replicates and the 64 datasets [‘Cluster Markov Packager Across K;’ Kopelman et al. (2015) 223 

implemented in POPHELPER (Francis 2017)]. Assignment probabilities were then visualized as 224 

stacked bar plots for each method (via a custom script: plotUML_missData_maf.R). For each 225 

dataset, we plotted as heatmaps the optimal K and standard deviation (SD) among replicates 226 

[(plot_missData_comparison_maf.R) (Scripts deposited at: 227 

https://github.com/btmartin721/mecr_boxturtle)]. 228 

 229 

2.8 Demography, migration history, and species-delimitation 230 

We tested for reticulation in our phylogenomic dataset, as complementary to a range-wide 231 

evaluation of introgression in Terrapene (Martin et al. 2020). We first explored reticulation by 232 

identifying candidate edges (TREEMIX; Pickrell & Pritchard 2012), with populations having but 233 

one sample (T. nelsoni and T. m. yucatana) being excluded from input, which was then thinned to 234 

bi-allelic SNPs. TREEMIX was run 10X with subsets of SNPs randomly sampled per locus at 235 

1,000 bootstrap replicates using the ‘global search’ option. The optimal number of admixture 236 
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edges (m) was determined by running for m=1-10 and choosing the inflection point of log-237 

likelihood scores.  238 

TREEMIX results and introgression (Martin et al. 2020) were used to generate gene flow 239 

hypotheses in a species-delimitation framework (DELIMITR: Smith et al. 2017; Smith & Carstens 240 

2020). DELIMITR uses the joint site-frequency spectrum (JSFS) and FASTSIMCOALV2.6 (Excoffier 241 

et al. 2013) to simulate demographic models, including possible variations of lumping/splitting 242 

taxa and primary divergence, secondary contact, or no gene flow. The program then builds an 243 

RF-classifier trained with the simulated models (i.e., ‘supervised’ M-L) to predict the best model. 244 

Input was generated using EASYSFS (https://github.com/isaacovercast/easySFS), with taxa 245 

reduced to N=6 given computational resources required by larger datasets. Those excluded (T. m. 246 

mexicana, T. m. yucatana, T. o. luteola, T. coahuila, T. nelsoni) were either limited in sample size 247 

or had clear taxonomic identities in the other analyses.  248 

 To improve efficiency, we also used EASYSFS to down-project the JSFS to six alleles for 249 

T. c. bauri, and ten each for the remaining taxa. Samples were selected to maximize per-250 

individual occupancy, followed by a maximum 50% per-population missing data filter. The 251 

SVDQUARTETS result served as our topological prior for DELIMITR. Models considered were: No 252 

gene flow, primary divergence, secondary contact, and up to four migration edges. Migration was 253 

permitted between: T. c. carolina x T. c. major, T. c. carolina x T. c. bauri, T. c. major x T. m. 254 

triunguis, and T. m. triunguis x T. o. ornata. Population size priors were set broadly (1,000-255 

100,000) and divergence times were obtained from LSD2 results. We defined a rule set that 256 

ranked overlapping coalescence times for T. c. bauri/T. m. triunguis and T. c. major from 257 

Mississippi/Florida. The migration rate prior range (1.96 × 10-6–9.78 × 10-5) was estimated from 258 
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the number of migrants (GENEPOP v4.7.5; Rousset 2008). We applied three JSFS binning classes 259 

and 5,000 RF trees to build the classifier and predict the models. 260 

 261 

3 RESULTS 262 

3.1 Sampling and data processing 263 

We sequenced 214 geographically-widespread Terrapene (Figure 1; Supplementary Information 264 

Table S1) including all recognized species and subspecies save the rare T. nelsoni klauberi. 265 

IPYRAD recovered 134,607 variable sites (of 1,163,463 total) across 14,760 retained loci, with 266 

90,777 as parsimony informative. The mean per-individual depth was 56.3X (Supplementary 267 

Information Figure S2). 268 

 269 

3.2 Species tree inference 270 

The lineage tree contained N=214 tips (Figure 2), whereas those from SVDQUARTETS (Figure 3a) 271 

and POMO (Figure 3b) grouped individuals into N=26 populations, again per locality and 272 

subspecies. SVDQUARTETS examined 10,299 unlinked SNPs and the species tree was assembled 273 

from 87,395,061 quartets. Full loci were used for POMO. All trees clearly delineated eastern 274 

versus western clades, with T. mexicana, T. carolina, and T. coahuila composing the eastern 275 

clade, with western represented by T. ornata and T. nelsoni.  276 

All phylogenies delineated T. ornata and T. nelsoni. However, SVDQUARTETS nested T. o. 277 

luteola within a paraphyletic T. o. ornata, whereas IQ-TREE and POMO represented them as 278 

reciprocally monophyletic. In the eastern clade, SVDQUARTETS displayed two subdivisions: 279 

Terrapene mexicana (all subspecies) and T. carolina+T. coahuila. POMO included T. m. triunguis 280 
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as sister to T. c. carolina+T. c. major but paraphyletic with respect to T. m. mexicana+T. m. 281 

yucatana. Furthermore, SVDQUARTETS, POMO, and IQ-TREE each differed with respect to the 282 

placement of T. c. bauri, T. coahuila, and two previously recognized populations within T. c. 283 

major (Martin et al. 2013, 2020). SVDQUARTETS depicted T. c. bauri as sister to the 284 

major/coahuila/carolina clade, whereas POMO placed T. c. major from Mississippi/coahuila as 285 

sister to T. c. major (FL)/bauri/carolina. IQ-TREE placed T. c. bauri sister to T. carolina/T. 286 

mexicana, and T. coahuila/T. c. major (MS) sister to T. c. carolina/T. c. major (FL). 287 

The topology tests failed to reject either Martin et al. (2013) or the SVDQUARTETS trees, 288 

whereas morphology-based and POMO trees were significantly rejected (Table 1). Although the 289 

SVDQUARTETS tree was ranked highest, site-likelihood scores indicated a minority of sites drove 290 

those topologies (Supplementary Information Figure S3). 291 

 292 

3.3 Species delimitation via BFD* and DELIMITR  293 

TREEMIX converged upon four migration edges (Figure 3c; Supplementary Information Figure 294 

S4), with gene flow identified between: Terrapene m. mexicana × T. o. ornata+T. o. luteola; T. c. 295 

carolina × T. c. bauri; T. m. triunguis × T. c. major (MS); and T. coahuila × T. c. major (FL). 296 

To target specific reticulation hypotheses, DELIMITR was run with a reduced set of sub-species, in 297 

compliance with computational constraints. The best-fitting DELIMITR model within selected taxa 298 

(T. m. triunguis, T. o. ornata, T. c. major, T. c. bauri, and T. c. carolina) was K=4 (posterior 299 

probability=0.98; Table 3; Figure 3d). Also, T. c. major and T. c. carolina were collapsed, and 300 

three secondary contact migration edges were apparent: T. o. ornata × T. c. carolina+T. c. major; 301 

T. c. bauri × T. c. carolina+T. c. major; and T. o. ornata × T. m. triunguis. The second-best 302 
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model was identical save for excluding the latter migration, although it also had the highest error 303 

(Table 3).  304 

 BFD* supported two top models (Table 2), each delimited (K=9), and all distinct except 305 

T. o. ornata/T. o. luteola (K=8; Figure 3d). Although not statistically distinguishable (BF<2), 306 

both were decisively better than others (BF>10). Convergence was confirmed for the likelihood 307 

traces, with mean per-model ESS>300 (Supplementary Information Table S2). 308 

 309 

3.4 UML species delimitation  310 

UML results varied considerably (Figures 4, 5; Supplementary Information Figures S5-S10), with 311 

mean optimal K greatest for T-SNE, followed by CMDS, VAE, and ISOMDS (Figures 4a, 5a). 312 

Across datasets, PAM clustering with the gap statistic (PAM+GS) exhibited the largest K, 313 

whereas PAM with the highest mean silhouette width (PAM+HMSW) was lowest (Figure 5b). 314 

Hierarchical clustering (HC)+HMSW and VAE were intermediate (Figures 4a, 5a; 315 

Supplementary Information Figure S5). Each algorithm delimited T. ornata from T. carolina+T. 316 

mexicana in most datasets, save PAM+HMSW in some of the larger datasets, and among some T-317 

SNE replicates (e.g., Supplementary Information Appendix B, B1). In all cases, CMDS with 318 

PAM+GS and HC+HMSW further delimited T. m. triunguis+T. m. mexicana from T. carolina, 319 

whereas CMDS with PAM+HMSW did not. Whether the remaining algorithms did so depended 320 

upon filtering parameters. Finally, CMDS with PAM+GS and HC+HMSW further partitioned 321 

subgroups within T. carolina in most datasets, whereas ISOMDS did so in a limited fashion, and 322 

T-SNE split T. carolina into multiple clusters without a phylogenetic pattern. Bar plots for 64 323 

filtered datasets are in Supplementary Information Appendix B1-B60. 324 
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We present representative results (Figure 3d) that displayed minimal inconsistencies 325 

among replicates and with respect to the phylogeny, with parameter choice also reflecting how 326 

each algorithm interacted with filtering values (below). This included 25% per-individual and 327 

per-population filters for all algorithms, a 5% MAF filter for CMDS, T-SNE, and VAE, and a 1% 328 

MAF filter for ISOMDS. Five groups were delineated by CMDS with PAM+GS: T. o. ornata 329 

(ON)+T. o. luteola (DS), T. c. major from Mississippi (GUMS), T. c. major from Florida 330 

(GUFL), T. c. carolina (EA), and T. m. mexicana (MX)+T. m. triunguis (TT). 331 

 However, T. c. bauri displayed mixed assignment between T. c. carolina and GUMS. 332 

CMDS with HC+HMSW also delimited K=5 but lumped the two populations of T. c. major, 333 

splitting T. c. bauri, and grouped some T. c. carolina individuals with T. c. bauri. It also split T. 334 

ornata and T. carolina+T. mexicana. While ISOMDS with PAM+GS resembled CMDS with 335 

HC+HMSW, it also clustered T. c. bauri with T. c. carolina. Similarly, ISOMDS with 336 

HC+HMSW showed T. o. ornata+T. o. luteola, T. c. carolina+GUMS+GUFL, and T. m. 337 

mexicana+T. m. triunguis. However, ISOMDS with PAM+HMSW only delimited T. ornata from 338 

T. carolina+T. mexicana. The model T-SNE (at perplexity=15) clearly partitioned T. ornata, T. 339 

carolina, and T. mexicana, though the PAM+GS algorithm exhibited spurious groupings within 340 

T. carolina. However, T-SNE with HC+HMSW clustered many T. c. carolina with GUFL and the 341 

remaining with GUMS. We found VAE and T-SNE with PAM+HMSW only delimited T. ornata, 342 

T. carolina, and T. mexicana. 343 

 344 
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3.5 Effects of data filtering 345 

Among all dimensionality reduction and clustering algorithms, greater per-individual and per-346 

population missing data generally increased mean optimal K and SD (Figures 4a-b and 5a-b; 347 

Supplementary Information Figure S5). PAM+HMSW deviated due to low K, regardless of 348 

filtering. This was manifested as two types of noise in the bar plots (Supplementary Information 349 

Appendix B1-B60): ‘vertical striping’ (inconsistency of assignment among replicates) and 350 

‘horizontal striping’ (groupings inconsistent with phylogeny). We found the former largely driven 351 

by increased missing data per-individual, whereas the latter by increased missing data per-locus. 352 

However, performance varied among algorithms in how they interacted with both missing data 353 

parameters.  354 

We found that T-SNE consistently resolved T. ornata and T. carolina+T. mexicana, but T. 355 

mexicana was only partitioned when per-population filtering was 25%. However, T-SNE did not 356 

further partition T. carolina in any dataset and displayed a tendency to form phylogenetically 357 

spurious groupings (=vertical striping). The perplexity grid search (Figures 4c-d and 5b; 358 

Supplementary Information Figures S6-S10) suggested that the highest K and SD among 359 

replicates was at perplexity=5-10, with a plateau at higher perplexities.  360 

 We also found CMDS with PAM+GS and HC+HMSW delineated most clades, save for 361 

inconsistency amongst the T. c. major populations and T. coahuila. In contrast, CMDS and 362 

ISOMDS with PAM+HMSW typically displayed K=2 or 3 and contained no phylogenetically 363 

meaningful clusters with ≥75% missing data per-individual (e.g., Supplementary Information 364 

Appendix B62). Finally, VAE partitioned T. ornata from T. carolina+T. mexicana in all datasets, 365 
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but T. mexicana was only delineated from T. carolina when per-individual missing data was 366 

≤50% and with MAF filter.  367 

Filtering by MAF ubiquitously reduced noise, although results varied by algorithm 368 

(Supplementary Information Appendix B1-B60). For T-SNE, optimal K and SD were reduced. In 369 

contrast, the clusters yielded by CMDS with PAM+GS and HC+HMSW were only marginally 370 

affected. We found CMDS and ISOMDS with PAM+HMSW and MAF filters ≥3% were less 371 

noisy, but for ISOMDS with PAM+GS and HC+HMSW the MAF filter effect was dependent on 372 

the number of individuals present in the dataset. With a maximum of 25% per-individual missing 373 

data (N=117), a 1% MAF filter shows minimal striping and higher K than did a >1% MAF filter. 374 

However, larger MAF filters have a greater effect above 25% per-individual filtering. Lastly, 375 

optimal K, SD, and striping in VAE were strongly influenced by MAF filters (Figures 4e-f, 5a, 376 

Supplementary Information Figure S5). With lower per-individual filters (≤50%) and a 5% MAF 377 

filter, VAE consistently delineated T. mexicana from T. carolina, even with high per-population 378 

filters. However, lower MAF and higher per-individual (>50%) filters introduced progressively 379 

more noise and grouped T. carolina and T. mexicana.  380 

 381 

3.6 Relative performance among approaches 382 

The CMDS model with PAM+GS and HC+HMSW consistently displayed the highest K and was 383 

less susceptible to data filtering. However, ISOMDS with PAM+GS and HC+HMSW was more 384 

influenced by filtering parameters, but still consistently resolved the highest level of hierarchical 385 

structure (T. ornata/T. carolina+T. mexicana). Both CMDS and ISOMDS with PAM+HMSW 386 

consistently displayed the lowest K at the top hierarchy and were usually in complete agreement. 387 
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We note that T-SNE was highly susceptible to horizontal and vertical striping, and only 388 

partitioned T. mexicana from T. carolina ssp. at 25% per-individual filtering. Similarly, VAE 389 

performed far more consistently with a 5% MAF filter and ≤50% per-individual filtering. VAE 390 

also consistently hovered between K=2 and K=3, making it the second most conservative 391 

algorithm next to PAM+HMSW. In contrast, BFD* delimited the most taxa among all the 392 

approaches, splitting all save T. o. luteola and T. o. ornata, and DELIMITR partitioned T. ornata, 393 

T. carolina, T. mexicana, and T. c. bauri.  394 

 In terms of computational resources, the UML algorithms were far less intensive than 395 

BFD* and DELIMITR, enabling stochasticity to be assessed in many replicates. Each UML 396 

algorithm needed ~1-3GB RAM per replicate and ~2-3 days runtime for 100 replicates. 397 

Comparatively, BFD* required the greatest memory and time, often using >200GB RAM (with 398 

16 CPU threads) and a ~10-day runtime per model. We note DELIMITR used much less memory 399 

and was faster than BFD*, but output ~3.2 TB with six tips and 51 models.  400 

 401 

4 DISCUSSION 402 

We observed substantial heterogeneity in resolving Terrapene via M-L approaches, which echoed 403 

previous morphological and single-gene results (Milstead 1967, 1969; Milstead & Tinkle 1967; 404 

Butler et al. 2011; Martin et al. 2013). We interpret this variability as reflecting inherent 405 

differences in dimensionality-reduction, clustering, and K-selection, as well how methodologies 406 

interact with biological aspects of the data and user-defined filtering. 407 

  408 
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4.1 Delimitation hypotheses and biological interpretations reconciled 409 

Two factors likely contribute to the observed heterogeneity: 1) An hierarchical arrangement of 410 

phylogenetic signal (Martin et al. 2013); and 2) Phylogenetic discord (Martin et al. 2020). Both 411 

reverberate noticeably within prior literature and phylogenetic evaluations.  412 

The most consistent grouping was eastern (T. carolina+T. mexicana) versus western (T. 413 

ornata) clades, representing the deepest Terrapene divergence (Figures 3a-b). This is 414 

unsurprising given it is the most prominent axis of molecular variation (morphologically 415 

corroborated; Milstead & Tinkle 1967; Dodd 2001) Nominal species have been identifiable since 416 

late Miocene (Holman & Fritz 2005), as corroborated by molecular dating (Figure 2). 417 

 418 

4.1.1 Terrapene ornata 419 

Although introgression between T. o. ornata and T. m. triunguis occurred during secondary 420 

contact (Table 3; Figure 3d), no contemporary evidence for introgression among these clades 421 

emerged from previous evaluations, except rare F1 hybrids between T. o. ornata and T. carolina 422 

(Martin et al. 2020). TREEMIX also suggested introgression between T. ornata and T. m. 423 

mexicana (Figure 3c). Although contact with T. mexicana was certainty possible during glacial 424 

expansion-contraction (Martin et al. 2020), we echo earlier conclusions that hybridization lacks 425 

justifiable taxonomic implications, per hybridization between T. ornata and T. carolina (Martin 426 

et al. 2020).  427 

Regarding T. ornata, algorithms failed to further partition T. o. ornata/T. o. luteola, 428 

suggesting a lack of diagnosability at our most recent scale. Notably, both also lack reciprocal 429 

monophyly in some phylogenomic (Figure 3a) and single-gene analyses (Martin et al. 2013). 430 
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They also lack clear morphological synapomorphies (Minx 1996). Although T. o. luteola exhibits 431 

habitat and movement patterns markedly different from mesic conspecifics (Nieuwolt 1996), few 432 

investigations have similarly compared T. ornata subspecies, such that inferences regarding 433 

reproductive isolation (or potential thereof) are difficult. Populations of T. o. luteola also do not 434 

exhibit thermal adaptations that are mutually exclusive from T. o. ornata, as might be surmised 435 

given other desert-dwelling tortoises (Plummer 2003).  436 

Previous authors hypothesized T. o. luteola as a relict population (Milstead & Tinkle 437 

1967). Weak differentiation [molecular: Martin et al. (2013); morphological: Dodd (2001)], as 438 

well as possible paraphyly of T. o. ornata (Figure 3a) suggest isolation was recent. Although 439 

phylogenetic structuring was present in some analyses (e.g., Figure 2), it is insufficient to 440 

mandate recognition beyond the subspecific level. However, special guidelines that delineate 441 

relictual lineages may be warranted (Mussmann et al. 2020), particularly given the isolation and 442 

reduced Ne in T. o. luteola (Nieuwolt 1996). 443 

  444 

4.1.2 Terrapene mexicana 445 

The second most frequent split (Figures 2, 3a) divided T. mexicana and T. carolina, 446 

corresponding to the second-deepest phylogenetic node (Figures 2, 3a). This lends further support 447 

to a prior elevation of T. mexicana (Martin et al. 2013). Conspecifics of T. mexicana also share 448 

multiple morphological characteristics, such as carapace coloration and a degree of concavity to 449 

the posterior plastron, that separate the group from T. carolina (Minx 1996). Terrapene mexicana 450 

mexicana (as well as T. m. yucatana, excluded due to sample size) have isolated, allopatric ranges 451 

(Smith & Smith 1980; Ernst & Lovich 2009), with reproductive isolation difficult to assume. 452 
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Evidence for interbreeding of T. m. triunguis with T. carolina subspecies in the 453 

southeastern United States (Butler et al. 2011) has led some to conclude that species-level 454 

recognition of T. mexicana sensu lato is unwarranted (Fritz & Havaš 2014). Indeed, our own 455 

results suggest introgression between T. m. triunguis and T. carolina in secondary contact (Figure 456 

3d). Martin et al. (2020) confirmed hybridization of T. m. triunguis with both T. c. major and T. 457 

c. carolina in the southeast, yet found genetic exchange was restricted, given that: (1) Genetically 458 

‘pure’ individuals are predominant throughout the contact zone; and (2) patterns of gene-level 459 

exchange exhibit strong sigmoidal patterns, suggesting selection against interspecific 460 

heterozygotes. Additionally, the sigmoidal pattern was strongest within a subset of genes 461 

involved in thermal adaptation (Martin et al. 2020), suggesting species boundaries are modulated 462 

by an adaptive barrier between co-occurring T. mexicana and T. carolina sub-species. This 463 

functional perspective corroborates the proposed taxonomy herein, and by Martin et al. (2013). 464 

 465 

4.1.3 Terrapene carolina 466 

Partitioning within T. carolina echoed inconsistencies in our phylogenies (Figures 2, 3a-b), and 467 

seemingly depended upon algorithm and filtering regime (Figure 3d; Supplementary Information 468 

B). Terrapene carolina major, for example, occasionally split from the remaining T. carolina 469 

(usually including T. coahuila; CMDS+HC, Figure 3d), whereas in other cases, T. c. major (FL 470 

and MS) were separated (with the former grouped into T. c. carolina) (T-SNE+HC, Fig. 3d) . 471 

In contrast to steep clines in interspecific comparisons (Martin et al. 2020; see above), a 472 

transect of the T. c. carolina and T. c. major contact zone revealed shallow genetic transition, 473 

with multiple loci showing potential signatures of selection-driven introgression. Previous 474 
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authors have hypothesized either direct ancestry (Bentley & Knight 1998) or historic admixture 475 

with a now extinct taxon, [T. c. putnami; Butler et al. (2011)]. While such ‘ghost’ admixture can 476 

mislead population structure (Lawson et al. 2018), such a signal is unlikely manufactured in 477 

entirety. In contrast to Butler et al. (2011), Martin et al. (2020) found a pervasive signal of 478 

population structure and strong molecular diagnosability in T. c. major, with a cryptic east-west 479 

division roughly defined by the Apalachicola River [a recurring phylogeographic discontinuity 480 

reflecting recolonization from disparate Gulf Coast refugia; Soltis et al. (2006)]. Our 481 

interpretations refuted the ‘genetic melting pot’ assertion (Fritz & Havaš 2014) and favored 482 

instead recognition of the two as distinct evolutionarily significant units (ESUs). Additionally, 483 

differences in habitat use and movement patterns distinguish T. c. major (Meck et al. 2020), 484 

which spends greater time in mesic habitats (e.g., floodplain swamps). In support, early studies 485 

observed a distinct webbing of the hind foot in T. c. major (Taylor 1895). Given the genetic data 486 

herein, we reject the taxonomic coalescence of T. c. major. 487 

Terrapene carolina bauri was similarly resistant to straightforward classification, 488 

although generally grouping with T. c. major (when the latter was separated from T. c. carolina; 489 

Figure 3b). We found T. c. bauri as sister to either the remaining T. carolina group, T. c. 490 

carolina+T. c. major, or only T. c. carolina (Figures 2-3; Martin et al. 2013). This argues against 491 

it being sister to T. m. triunguis (per Spinks et al. 2009). Osteologically, it alone shares a 492 

complete zygomatic arch with T. c. major (Taylor 1895; Ditmars 1934), although other 493 

morphological investigations have allied it more closely with T. c. carolina (Minx 1996). Thus, 494 

phylogenetic inconsistency for T. c. bauri clearly extends beyond our results. 495 

Although hybridization likely contributes to this issue (as with T. c. major), the 496 

biogeography of the region may provide insight, with peninsular Florida recognized as a distinct 497 
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biogeographic province (Ennen et al. 2017). Intraspecific division are recognized in multiple 498 

species [e.g., Chelydra serpentina, Deirochelys reticularia (Walker & Avise 1998)], a 499 

phylogenetic legacy likely reflecting periodic isolation from the mainland that may have inflated 500 

genetic divergences (Douglas et al. 2006), and facilitated secondary contact. This scenario is 501 

supported by DELIMITR and TREEMIX (Figures 3c-d). Here, we again stress that evidence is 502 

sufficient to support continued recognition, yet not for taxonomic elevation. 503 

  504 

4.1.4 Terrapene coahuila 505 

Terrapene coahuila represents a persistent phylogenetic uncertainty (Spinks et al. 2009; Wiens et 506 

al. 2010; Martin et al. 2013). It is unique in that it occupies streams, ponds, and marshes, with 507 

terrestrial movements restricted to the rainy seasons (Webb et al. 1963). Milstead (1967) 508 

postulated that T. coahuila evolved as a relictual population of a Terrapene ancestor (potentially 509 

the extinct T. c. putnami) during pluvial periods associated with Pleistocene glacial-interglacial 510 

cycles across the broad eastern coastal plain of Mexico. In this scenario, relictual populations are 511 

what remains from those north-south migrations, as hypothesized for T. m. mexicana and T. m. 512 

yucatana. The scenario is plausible, given semi-aquatic adaptations in the presumed ancestor (T. 513 

c. putnami) and closely related T. c. major, as well as shared morphologies between extinct T. c. 514 

putnami and modern T. coahuila (Milstead 1967). The phylogenetic placement of T. coahuila, as 515 

nested within T. c. major, offers further evidence (Figure 2-3), as does the almost unanimous 516 

UML grouping in our results (Figure 3d; Supplementary Information Appendix B1-B60). As with 517 

T. o. luteola, small, isolated populations that differ in evolutionary rates could contribute to a lack 518 
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of molecular similarity with extant T. c. major, despite a unique functional morphology (Brown 519 

1971).  520 

 521 

4.2 Relative performance of species-delimitation methods  522 

As with prior studies (Derkarabetian et al. 2019; Mussmann et al. 2020), we also found 523 

considerable variation among methods, some of which can be attributed either to idiosyncrasies 524 

in the data or to algorithms and their implementation. First, among RF methods CMDS with 525 

PAM+GS and HC+HMSW displayed higher K and ISOMDS generally yielded smaller K (Figure 526 

3d), with the latter being attributed by Derkarabetian et al. (2019) to the retention of only two 527 

dimensions. PAM+HMSW (Figure 3d) also trended towards a small K=2, corresponding to the 528 

deepest Terrapene bifurcation, and suggesting a potential failure in identifying hierarchical 529 

clusters. Here, a solution might include partitioning divergent subtrees for separate analyses.  530 

In contrast to Derkarabetian et al. (2019), we found T-SNE the most inclined to produce 531 

inconsistent groupings, a pattern most prevalent with the gap statistic (Supplementary 532 

Information Appendix B1-B60). Mussmann et al. (2020) concurred, although in their case it was 533 

PAM+HMSW. We see this as an inherent problem relating to data structure. Previous 534 

comparisons of T-SNE found low fidelity with global data patterns, and latent space distances 535 

were poor proxies for ‘true’ among-group distances, particularly when compared to VAE (Becht 536 

et al. 2019; Battey et al. 2020). This potentially explains our observed ‘plateau’ of mean optimal 537 

K and SD in the T-SNE perplexity grid-search, in that perplexity defines relative weighting of 538 

local versus global components (Wattenberg et al. 2016). It may also explain the formation of 539 

spurious clusters even at higher perplexities, in that clusters are formed post hoc (PAM or HC). 540 
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Thus, T-SNE may perform poorly when inter-cluster distances/dispersion in global data structure 541 

are skewed, although it is not clear to what degree hyperparameter choice and initializations 542 

contribute (Belkina et al. 2019; Kobak & Berens 2019).  543 

In our case, VAE with DBSCAN yielded higher fidelity to the underlying phylogeny 544 

(Figure 3a) and was also more robust to missing data (Figures 4e-f). A particular benefit of the 545 

VAE approach is the output of a standard deviation around samples in latent space 546 

(Derkarabetian et al. 2019). Our DBSCAN hyperparameters were informed directly from latent 547 

variable uncertainties, and in so doing, we circumvented the issue of K-selection that drove 548 

heterogeneity in the RF and T-SNE methods [also recognized with other clustering approaches 549 

(Janes et al. 2017)].  550 

By comparison, BFD* partitioned all groups, which may reflect a vulnerability to local 551 

structure at the population level, as reported by others for MSC methods (Sukumaran & Knowles 552 

2017). BFD* and VAE partitioned equally in Mussmann et al. (2020), although their populations 553 

were relictual and without contemporary connectivity, whereas Terrapene reflects both historical 554 

(Figure 3d) and contemporary gene flow (Martin et al. 2020). In corroboration, other studies have 555 

also demonstrated reticulation to condense VAE clusters (Derkarabetian et al. 2019; Newton et 556 

al. 2020). Although not run on a full dataset, DELIMITR formed clusters consistent with (or similar 557 

to) several of the UML methods (e.g., ISOMDS+GS; Figure 3d, Table 3). The latter displayed a 558 

particular utility regarding testing targeted hypotheses relating to demographic processes such as 559 

migration, whereas these must be applied to UML results post hoc. 560 

  561 
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4.3 Data treatment and assignment consistency  562 

We generally found a tendency for UML methods to ‘over-split’ given large amounts of missing 563 

data, and phylogenetically inconsistent groupings (‘horizontal striping’) were most pronounced 564 

when missing data was elevated per-individual (Supplementary Information Appendix B1-B60). 565 

However, low-level, undetected introgression could also drive such a pattern. Mussmann et al. 566 

(2020) noted a similar pattern with the RF methods, possibly reflecting an artificial similarity 567 

among samples generated by a non-random distribution of missing data. A similar ‘vertical 568 

striping’ effect was seen when missing data was elevated per-locus (e.g., Supplementary 569 

Information Appendix B13), often manifested as inconsistency among replicates. However, 570 

effects varied across methods, as per previous analyses [phylogeographic: Graham et al. (2020); 571 

phylogenetic: Molloy & Warnow (2018)].  572 

Missing-data bias is a particular concern when patterns are non-random (i.e., presence or 573 

absence of observations are data-dependent; Rubin 1976). Here, the temptation is to filter 574 

stringently, yet we found highly filtered datasets were biased towards smaller K, generally 575 

retaining only nodes deepest within the phylogeny. The same pattern was identified using the 576 

VAE method (Newton et al. 2020), and is intuitive given expectations that a major subset of 577 

missing ddRAD data are systematically distributed [defined by mutation-disruption of restriction 578 

sites: Gautier et al. (2013); Eaton et al. (2017)]. Thus, indiscriminate exclusion may unintendedly 579 

bias information content leading to the underestimation of diversity (Arnold et al. 2013; Leaché 580 

et al. 2015; Huang & Knowles 2016). Again, care must be taken to filter the data such that 581 

sufficient discriminatory signal remains, while also being mindful of the signal-to-noise ratio, and 582 
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the underlying biases driving interactions of sparse data versus information content (Nakagawa & 583 

Freckleton 2008).  584 

A potential solution involves the input of genotypes to fill in missing values (per Howie et 585 

al. 2009; Durbin 2014; Das et al. 2016). However, a cautious a priori designation of population 586 

references is needed, particularly when group-delimitation is the goal. It may be appropriate to 587 

employ phylogenetically-informed methods previously applied in comparative studies (e.g., 588 

Goolsby et al. 2017).  589 

We found MAF filters dampened the effect of missing data, likely by removing 590 

sequencing errors and uninformative variants at low-frequency (Mathieson & McVean 2012; 591 

Jakobsson et al. 2013). In a similar context, Linck & Battey (2019) found MAF filters to 592 

significantly increase in the discriminatory capacity of assignment-test methods (STRUCTURE; 593 

Pritchard et al. 2000). In our case, MAF filtering reduced noise and improved group 594 

differentiation (e.g., resulting in lower variability among replicates; Figures 4-5, Supplementary 595 

Information Figures S5-S6), although this might prompt the M-L algorithms to miss low levels of 596 

introgression. Thus, we view it as a parameter in need of further empirical exploration. 597 

 598 

4.4 Conclusions 599 

UML approaches identify groups based on the structure of the data, and as such, represent a 600 

natural extension to species-delimitation approaches. However, we found idiosyncrasies 601 

regarding: Phylogenetic context of the study system (e.g., hierarchical structure, reticulation); the 602 

manner by which clustering and K-selection approaches were applied post hoc; and the 603 

bioinformatic treatment of the data. We particularly note that lax filtering, performed to maximize 604 
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size and information content, actually promote spurious groupings and inflate variability among 605 

replicates. An alternate method, i.e., filtering via MAF to promote informative characters, 606 

favorably altered the signal-to-noise ratio and increased the consistency of our delimitations. 607 

Thus, we recommend that UML practitioners test multiple algorithms, veer away from high levels 608 

of missing data, and utilize MAF filters. We conclude that UML approaches, when applied to 609 

formulate taxonomic hypotheses and reduce dimensionality of complex data, are valuable and 610 

computationally efficient tools for integrative species-delimitation, as demonstrated within our 611 

study system. 612 
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TABLE 1 Topology tests for hypothesized Terrapene phylogenies. Sanger sequencing and 931 
morphology trees are based on previously published data whereas those representing 932 
SVDQUARTETS and POMO (Polymorphism-Aware Model) were generated in this study from 933 
ddRADseq data. P-values in bold with ‘*’ indicate significance (P>0.05/highly weighted).  934 
 935 
 936 
Guide Tree Log-likelihood ΔLL BP-RELL P-KH P-SH C-ELW P-AU 

Morphology -2639307.9 601.5 0.00 0.01 0.02 0.00 0.01 
PoMo -2639200.2 493.8 0.01 0.03 0.06* 0.01 0.03 
Sanger -2638898.4 192.0 0.23* 0.24* 0.41* 0.23* 0.26* 
SVDquartets -2638706.4 0.0 0.75* 0.76* 1.00* 0.75* 0.81* 
ΔLL=change in log-likelihood 937 
BP-RELL=Bootstrap proportions using RELL method (weights sum to 1) 938 
P-KH=Kishino-Hasegawa test 939 
P-SH=Shimodaira-Hasegawa test 940 
C-ELW=Expected likelihood weight (sum to 1) 941 
P-AU=Approximately unbiased test 942 
 943 
  944 
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TABLE 2 Species-delimitation results from Bayes Factor Delimitation (BFD) in Terrapene. 945 
Bayes factors (BF) depict support among models and were calculated as 2 × (MLE1-MLE2). 946 
‘*’=best supported models; ‘+’=taxa grouped together; ‘/’=multiple groupings. DS=T. o. luteola, 947 
ON=T. o. ornata, EA=T. c. carolina, GUFL=T. c. major from Florida, GUMS=Mississippi T. c. 948 
major, CH=T. coahuila, FL=T. c. bauri, TT=T. m. triunguis, and MX=T. m. mexicana. East=all 949 
T. carolina and T. mexicana, West=all T. ornata. Outgroup (not shown) included Clemmys 950 
guttata. 951 
 952 

BFD* Model MLE† K‡ Rank§ BF¶ 

All Separate* -2403.39 10 1 - 

DS+ON* -2404.34 9 2 1.90 

EA+GUFL -2417.84 9 3 28.91 

GUMS+GUFL -2427.58 9 4 48.39 

GUMS+CH -2448.61 9 5 90.44 

GUMS+CH/GUFL+EA -2461.28 8 6 115.79 

GUMS+GUFL+CH -2489.62 8 7 172.45 

EA+FL -2511.83 9 8 216.89 

GUMS+GUFL+CH+EA -2514.86 7 9 222.94 

EA+FL+GUFL -2552.22 8 10 297.66 

EA+FL/CH+GUMS -2555.16 8 11 303.53 

EA+FL+GUFL/CH+GUMS -2594.91 7 12 383.04 

EA+CH+GUMS+GUFL+TT -2607.72 6 13 408.66 

EA+CH+GUMS+GUFL+MX -2657.48 6 14 508.19 

EA+FL+CH+GUMS+GUFL -2693.37 6 15 579.96 

EA+CH+GUMS+GUFL+TT+MX -2719.02 5 16 631.27 

ON+DS/EA+TT+MX+CH+GUMS+GUFL/FL -2720.23 4 17 633.69 

EA+FL+CH+GUMS+GUFL+TT -2800.56 5 18 794.35 

EA+FL+CH+GUMS+GUFL+TT+MX -2926.20 4 19 1045.62 

East/West -2926.56 3 20 1046.35 

†MLE=Marginal likelihood estimates 953 
‡K=# tips 954 
§Rank=model ranking based on MLE (lower=better) 955 
¶BF=Bayes factors 956 
 957 
 958 
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TABLE 3 The top five (of 51) DELIMITR models describing six Terrapene taxa. Model=rank 959 
determined by random forest (RF) vote counts (=# Votes). ‘*’=best supported model. Grouped 960 
taxa are separated by ‘+’, whereas ‘/’=distinct groups. ‘×’ separates migration events promoting 961 
secondary contact, with multiple migrations per model separated by commas. ON=T. o. ornata, 962 
TT=T. m. triunguis, FL=T. c. bauri, GUMS=T. c. major from Mississippi, GUFL=Florida T. c. 963 
major, EA=T. c. carolina. Error=proportion of incorrect model choices. 964 
 965 
Model # Votes Species (# delimited) Secondary Contact Error 
17* 464 ON/TT/FL/GUMS+GUFL+EA (4) ON × TT, TT × GU+EA, FL × GU+EA 0.017 
14 445 ON/TT/FL/GUMS+GUFL+EA (4) TT × GU+EA, FL × GU+EA 0.036 
3 441 ON/TT+FL+GUMS+GUFL+EA (2) ON × TT+FL+GU+EA 0.009 
8 359 ON/TT/FL+GUMS+GUFL+EA (3) ON × TT, TT × FL+GU+EA 0.009 
30 218 ON/TT/FL/GUMS+GUFL/EA (5) TT × GU, FL × EA, GU × EA 0.007 

 966 
  967 
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 968 
FIGURE 1 Range map and sample localities (=circles) for N=214 Terrapene. Closed circles=T. 969 
carolina samples without subspecific identification in the field. Cross-hatched areas=known 970 
hybrid zones. Headings and subheadings represent species and subspecies. Terrapene carolina 971 
major=T. carolina major and includes distinct subpopulations from Mississippi (GUMS) and 972 
Florida panhandle (GUFL). Parenthetical legend abbreviations correspond to Tables 2 and 3. 973 
 974 
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 975 
FIGURE 2 Chronogram reflecting relationships among 214 Terrapene ddRADseq samples as 976 
generated in IQ-TREE v2.1.2 and time-calibrated using LSD2. Node support was assessed with 977 
1,000 ultrafast bootstrap (UFBOOT) replicates, and site concordance-factors (SCF) calculated 978 
from 10,000 randomly-sampled quartets. Well-supported nodes (UFBOOT≥95%, SCF≥50%) are 979 
represented by color-coded circles or squares, with squares showing fossil calibration points. 980 
Node bars reflect 95% confidence intervals based on 1,000 simulated trees. Clemmys guttata and 981 
Emydoidea blandingii represent outgroups. 982 
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 983 
FIGURE 3 Species trees, TREEMIX, and species delimitation results among Terrapene 984 
ddRADseq samples. Parenthetical legend abbreviations correspond to Tables 2 and 3. 985 
Phylogenies (N=214) were generated by (a) SVDQUARTETS and (b) POMO with 26 populations 986 
grouped by subspecies and state locality. ‘*’ and ‘+’ indicate 100% and ≥95% bootstrap support. 987 
(c) Migration supported by TREEMIX (blue arrows) and previously published results (red/dashed 988 
lines; Martin et al. 2020). Outgroups were omitted for clarity. (d) Species delimitations for UML 989 
(N=117), multispecies coalescent (MSC; BFD=Bayes Factor Delimitation; N=37), and process-990 
based (DELIMITR; N=28) methods. UML data filtering allowed ≤25% missing data per-individual 991 
and per-population, with minor allele frequency filters=5% (CMDS/T-SNE/VAE) and 1% 992 
(ISOMDS), and T-SNE perplexity=15. UML includes RF=random forest, visualized with CMDS 993 
and ISOMDS ordination, T-SNE, and VAE, with bar plots depicting assignment proportions 994 
among 100 replicates and aligning with chronogram tips. RF and T-SNE optimal K were 995 
assessed using partition around medoids (PAM)+gap statistic (GS), PAM+highest mean 996 
silhouette width (HMSW), and hierarchical clustering (HC)+HMSW, whereas VAE, BFD, and 997 
DELIMITR used DBSCAN, Bayes Factors (BF) and RF votes. Blue/dashed arrows show gene 998 
flow supported by DELIMITR. ‘†’ indicates a monotypic T. coahuila.  999 
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 1000 
 1001 
FIGURE 4 Heatmaps depicting mean and standard deviation (SD) of optimal K among 100 1002 
unsupervised machine learning species-delimitation replicates. Input ddRADseq alignments were 1003 
filtered with a maximum of 25%, 50%, 75%, and 100% (=no filter) missing data allowed per-1004 
individual and per-population, and with minor allele frequency (MAF) filters as 5%, 3%, 1%, 1005 
and 0% (=no filter). (a) and (b)=Pairwise missing data heatmaps for three dimensionality-1006 
reduction methods (CMDS and ISOMDS=classical and isotonic multidimensional scaling), T-1007 
SNE=t-distributed stochastic neighbor embedding versus three clustering algorithms [(partition 1008 
around medoids+gap statistic (GS)]; HC=hierarchical clustering+highest mean silhouette width 1009 
(HMSW); PAM=partition around medoids+HMSW. (c) and (d)=T-SNE heatmap panels 1010 
comparing clustering algorithms with ten perplexity (P) settings. (e) and (f)=VAE (variational 1011 
autoencoder) heatmaps with optimal K chosen via DBSCAN.   1012 
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 1013 

 1014 
 1015 
Figure 5 Regressions showing relationship between mean optimal K (y-axes), missing data, and 1016 
minor allele frequency (MAF) filtering parameters. Missing data was filtered both per-individual 1017 
(x-axes) and per-population (panel rows), with a maximum allowed of 25%, 50%, 75%, and 1018 
100% (=no filtering). Minor allele frequency (MAF) filters of 5%, 3%, 1%, and 0% (=no 1019 
filtering) were also applied (panel columns). (a) Colors correspond to the dimensionality-1020 
reduction methods: CMDS and ISOMDS=classical and isotonic multidimensional scaling, T-1021 
SNE=t-distributed stochastic neighbor embedding, VAE=variational autoencoder. (b) Colors 1022 
indicate three clustering algorithms: GS=partition around medoids+gap statistic, 1023 
HC=hierarchical clustering+highest mean silhouette width (HMSW), PAM=partition around 1024 
medoids+HMSW. 1025 
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